Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4151 entries in the Bibliography.


Showing entries from 901 through 950


2018

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given by three and a half years of Van Allen Probes data. Two methods to convert from integral to differential flux are explored. One utilizes integral and differential flux energy distributions from the AE9 model, the second employs an iterative fitting approach based on a Reverse Monte Carlo (RMC) method. The omnidirectional differential flux was converted to an equatorial pitch angle of 90\textdegree, again using statistical pitch angle distributions from Van Allen Probe data. We validate the resulting 90\textdegree flux for 100- to 600-keV electrons against measurements from the Van Allen Probes and show an average agreement within a factor of 4 for L* > 3.7. The resulting data set offers a high time resolution, across multiple magnetic local time planes, and may be used to formulate event-specific low-energy boundary conditions for radiation belt models.

Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025786

electrons; integral flux; Radiation belts; seed population; Van Allen Probes

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given by three and a half years of Van Allen Probes data. Two methods to convert from integral to differential flux are explored. One utilizes integral and differential flux energy distributions from the AE9 model, the second employs an iterative fitting approach based on a Reverse Monte Carlo (RMC) method. The omnidirectional differential flux was converted to an equatorial pitch angle of 90\textdegree, again using statistical pitch angle distributions from Van Allen Probe data. We validate the resulting 90\textdegree flux for 100- to 600-keV electrons against measurements from the Van Allen Probes and show an average agreement within a factor of 4 for L* > 3.7. The resulting data set offers a high time resolution, across multiple magnetic local time planes, and may be used to formulate event-specific low-energy boundary conditions for radiation belt models.

Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025786

electrons; integral flux; Radiation belts; seed population; Van Allen Probes

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given by three and a half years of Van Allen Probes data. Two methods to convert from integral to differential flux are explored. One utilizes integral and differential flux energy distributions from the AE9 model, the second employs an iterative fitting approach based on a Reverse Monte Carlo (RMC) method. The omnidirectional differential flux was converted to an equatorial pitch angle of 90\textdegree, again using statistical pitch angle distributions from Van Allen Probe data. We validate the resulting 90\textdegree flux for 100- to 600-keV electrons against measurements from the Van Allen Probes and show an average agreement within a factor of 4 for L* > 3.7. The resulting data set offers a high time resolution, across multiple magnetic local time planes, and may be used to formulate event-specific low-energy boundary conditions for radiation belt models.

Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025786

electrons; integral flux; Radiation belts; seed population; Van Allen Probes

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self-consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctuations is larger than the radial component, indicating wave propagation mainly along the azimuthal direction. Because the simulation box is within the source region, this also implies wave amplification mainly during azimuthal propagation. The excellent agreement between the wave polarization properties of the present simulations and the recently reported observations is clear evidence that the main wave amplification occurs during azimuthal propagation in the source region.

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self-consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctuations is larger than the radial component, indicating wave propagation mainly along the azimuthal direction. Because the simulation box is within the source region, this also implies wave amplification mainly during azimuthal propagation. The excellent agreement between the wave polarization properties of the present simulations and the recently reported observations is clear evidence that the main wave amplification occurs during azimuthal propagation in the source region.

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly-generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly-generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly-generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E \texttimes B convection and the parameterization of geomagnetic conditions (under the Kp-index and solar wind properties) implemented by CPL did not account for localized enhancements in the duskward electric field during increased activity. Rather, it was found to be largely dependent on the measure of the quiet time background. This property indicates that the agreement between these simulations and observations does not account for the complete set of physical processes during extreme (strong or weak) geomagnetic conditions impacting the plasmasphere. Nevertheless, at the presented resolution of the model CPL does provide good agreement in reproducing Radiation Belt Storm Probes observations of plasmaspheric density and plasmapause location.

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E \texttimes B convection and the parameterization of geomagnetic conditions (under the Kp-index and solar wind properties) implemented by CPL did not account for localized enhancements in the duskward electric field during increased activity. Rather, it was found to be largely dependent on the measure of the quiet time background. This property indicates that the agreement between these simulations and observations does not account for the complete set of physical processes during extreme (strong or weak) geomagnetic conditions impacting the plasmasphere. Nevertheless, at the presented resolution of the model CPL does provide good agreement in reproducing Radiation Belt Storm Probes observations of plasmaspheric density and plasmapause location.

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E \texttimes B convection and the parameterization of geomagnetic conditions (under the Kp-index and solar wind properties) implemented by CPL did not account for localized enhancements in the duskward electric field during increased activity. Rather, it was found to be largely dependent on the measure of the quiet time background. This property indicates that the agreement between these simulations and observations does not account for the complete set of physical processes during extreme (strong or weak) geomagnetic conditions impacting the plasmasphere. Nevertheless, at the presented resolution of the model CPL does provide good agreement in reproducing Radiation Belt Storm Probes observations of plasmaspheric density and plasmapause location.

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E \texttimes B convection and the parameterization of geomagnetic conditions (under the Kp-index and solar wind properties) implemented by CPL did not account for localized enhancements in the duskward electric field during increased activity. Rather, it was found to be largely dependent on the measure of the quiet time background. This property indicates that the agreement between these simulations and observations does not account for the complete set of physical processes during extreme (strong or weak) geomagnetic conditions impacting the plasmasphere. Nevertheless, at the presented resolution of the model CPL does provide good agreement in reproducing Radiation Belt Storm Probes observations of plasmaspheric density and plasmapause location.

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels

Electron flux measurements are an important diagnostic for interactions between ultralow-frequency (ULF) waves and relativistic (\~1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh-resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission\textemdashobtained using a data product that improves the energy resolution by roughly an order of magnitude\textemdashare crucial for understanding ULF wave-particle interactions. In particular, the ultrahigh-resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard measurements provide estimates for the ULF flux modulation amplitude, period, and phase that may not be representative of true flux modulations, potentially leading to ambiguous conclusions concerning electron dynamics.

Hartinger, M.; Claudepierre, S.; Turner, D.; Reeves, G.; Breneman, A.; Mann, I.; Peek, T.; Chang, E.; Blake, J.; Fennell, J.; O\textquoterightBrien, T.; Looper, M.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080291

drift resonance; particle detector; Pc5; Radiation belts; ULF wave; Van Allen Probes; Wave-particle interaction

An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements

Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch-angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in-phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth rates further supports above conclusion. We suggest that exohiss waves have potential to become more significant due to the background plasma fluctuation.

Zhu, Hui; Shprits, Yuri; Chen, Lunjin; Liu, Xu; Kellerman, Adam;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2017JA025023

electromagnetic waves; Exohiss; linear theory; Radiation belts; Van Allen Probes

An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements

Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch-angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in-phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth rates further supports above conclusion. We suggest that exohiss waves have potential to become more significant due to the background plasma fluctuation.

Zhu, Hui; Shprits, Yuri; Chen, Lunjin; Liu, Xu; Kellerman, Adam;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2017JA025023

electromagnetic waves; Exohiss; linear theory; Radiation belts; Van Allen Probes

Fine structure of whistler-mode hiss in plasmaspheric plumes observed by the Van Allen Probes

We survey 3 years (2013-2015) of data from the Van Allen Probes related to plasmaspheric plume crossing events. We detect 194 plume crossing events, and we find that 97\% of the plumes are accompanied by VLF hiss emissions. The plumes are mainly detected on the duskside or dayside. Careful examination of the hiss spectra reveals that all hiss emissions consist of obvious fine structure. Application of a band pass filter reveals that the fine structure is consistent with the occurrence of discrete wave packets. The hiss data display high coherency. The events are classified by location. Dusk side hiss and night side hiss tend to have extremely high polarization with no chorus at the high-frequency end of the dynamic spectrum. The dusk side hiss has a distinct upper frequency limit. On the other hand, the dawn side hiss has strong chorus elements at the upper hiss frequency which makes the upper frequency limit ambiguous. We show that the structure of whistler-mode hiss is different from artificial random noise. Although noise also has fine spectral characteristics, the polarization and waveform data are totally different from the hiss cases. Our results strongly suggest that whistle-mode hiss in plasmaspheric plumes universally possesses fine structure.

Nakamura, S.; Omura, Y.; Summers, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025803

fine structure; hiss; nonlinear; plasmaspheric plume; Van Allen Probes

Impact of Background Magnetic Field for EMIC Wave-Driven Electron Precipitation

Wave-particle interaction between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves is a highly debated loss process contributing to the dynamics of Earth\textquoterights radiation belts. Theoretical studies show that EMIC waves can result in strong loss of relativistic electrons in the radiation belts (Summers \& Thorne, 2003, https://doi.org/10.1029/2002JA009489). However, many of these studies have not been validated by observations. Li et al. (2014, https://doi.org/10.1002/2014GL062273) modeled the relativistic electron precipitation observed by Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) in a single-event case study based on a quasi-linear diffusion model and observations by Van Allen Probes and GOES 13. We expand upon that study to investigate the localization of the precipitation region and the effectiveness of EMIC waves as an electron loss mechanism.The model results of BARREL 1I observations on 17 January 2013 show that as the BARREL balloon drifts in local time to regions that map to lower equatorial magnetic field strength, the flux of precipitating electrons increases and peaks at lower energy. The hypothesis that the energy of the precipitating electrons is controlled by background magnetic field strength is further tested by considering observations from balloon campaigns conducted from 2000 to 2014, including BARREL. Consistent with theory for wave-particle interaction between relativistic electrons and EMIC waves, we find observationally that stronger equatorial magnetic field strength generally correlates with more energetic electron precipitation and further conclude that magnetic field strength can drive the localization and distribution of precipitating electrons.

Woodger, L.; Millan, R.; Li, Z.; Sample, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025315

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

Impact of Background Magnetic Field for EMIC Wave-Driven Electron Precipitation

Wave-particle interaction between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves is a highly debated loss process contributing to the dynamics of Earth\textquoterights radiation belts. Theoretical studies show that EMIC waves can result in strong loss of relativistic electrons in the radiation belts (Summers \& Thorne, 2003, https://doi.org/10.1029/2002JA009489). However, many of these studies have not been validated by observations. Li et al. (2014, https://doi.org/10.1002/2014GL062273) modeled the relativistic electron precipitation observed by Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) in a single-event case study based on a quasi-linear diffusion model and observations by Van Allen Probes and GOES 13. We expand upon that study to investigate the localization of the precipitation region and the effectiveness of EMIC waves as an electron loss mechanism.The model results of BARREL 1I observations on 17 January 2013 show that as the BARREL balloon drifts in local time to regions that map to lower equatorial magnetic field strength, the flux of precipitating electrons increases and peaks at lower energy. The hypothesis that the energy of the precipitating electrons is controlled by background magnetic field strength is further tested by considering observations from balloon campaigns conducted from 2000 to 2014, including BARREL. Consistent with theory for wave-particle interaction between relativistic electrons and EMIC waves, we find observationally that stronger equatorial magnetic field strength generally correlates with more energetic electron precipitation and further conclude that magnetic field strength can drive the localization and distribution of precipitating electrons.

Woodger, L.; Millan, R.; Li, Z.; Sample, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025315

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when compared to the LIE for >800 keV electrons that was found consistently at ~1.5 RE outside of the innermost Lpp. The IE of 10s keV electrons was observed before the IE of 100s keV electrons, and the IE of >800 keV electrons was observed on average 12.6\textpm2.3 hours after the occurrence of the earliest IE event. In addition, we report an overall electron (~30 keV to ~2 MeV) flux increase outside the plasmasphere during the selected storm periods, in contrast to the little change of energy spectrum evolution inside the plasmasphere; this demonstrates the important role of the plasmasphere in shaping energetic electron dynamics. Our investigation of the LIE-Lpp relationship also provides insights into the underlying physical processes responsible for the dynamics of tens keV to >MeV electrons.

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

On the Initial Enhancement of Energetic Electrons and the Innermost Plasmapause Locations: CME-Driven Storm Periods

Using Van Allen Probes\textquoteright observations and established plasmapause location (Lpp) models, we investigate the relationship between the location of the initial enhancement (IE) of energetic electrons and the innermost (among all magnetic local time sectors) Lpp over five intense storm periods. Our study reveals that the IE events for 30 keV to 2MeV electrons always occurred outside of the innermost Lpp. On average, the inner extent of the IE events (LIE) for <800 keV electrons was closer to the innermost Lpp when compared to the LIE for >800 keV electrons that was found consistently at ~1.5 RE outside of the innermost Lpp. The IE of 10s keV electrons was observed before the IE of 100s keV electrons, and the IE of >800 keV electrons was observed on average 12.6\textpm2.3 hours after the occurrence of the earliest IE event. In addition, we report an overall electron (~30 keV to ~2 MeV) flux increase outside the plasmasphere during the selected storm periods, in contrast to the little change of energy spectrum evolution inside the plasmasphere; this demonstrates the important role of the plasmasphere in shaping energetic electron dynamics. Our investigation of the LIE-Lpp relationship also provides insights into the underlying physical processes responsible for the dynamics of tens keV to >MeV electrons.

Khoo, Leng; Li, Xinlin; Zhao, Hong; Sarris, Theodore; Xiang, Zheng; Zhang, Kun; Kellerman, Adam; Blake, Bernard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026074

energetic electron; enhancements; plasmasphere; Radiation belt; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Pitch Angle Scattering of Energetic Electrons by BBFs

Field line curvature scattering by the magnetic field structure associated with bursty bulk flows (BBFs) has been studied, using simulated output fields from the Lyon-Fedder-Mobarry global magnetohydrodynamic code for specified solar wind input. There are weak magnetic field strength (B) regions adjacent to BBFs observed in the simulations. We show that these regions can cause strong scattering where the first adiabatic invariant changes by several factors within one equatorial crossing of energetic electrons of a few kiloelectron volts when the BBFs are beyond 10RE geocentric in the tail. Scattering by BBFs decreases as they move toward the Earth or when the electron energy decreases. For radiation belt electrons near or inside geosynchronous orbit we demonstrate that the fields associated with BBFs can cause weak scattering where the fractional change of the first invariant (μ0) within one equatorial crossing is small, but the change due to several crossings can accumulate. For the weak scattering case we developed a method of calculating the pitch angle diffusion coefficient Dαα. Dαα for radiation belt electrons for one particular BBF were calculated as a function of initial energy, equatorial pitch angle, and radial location. These Dαα values were compared to calculated Dαα for a dipole field with no electric field. We further compared Dαα values with that of stretched magnetic fields calculated by Artemyev et al. (2013, https://doi.org/10.5194/angeo-31-1485-2013) at r≈7RE. Results show that scattering by BBFs can be comparable to the most highly stretched magnetic field they studied.

Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025788

Van Allen Probes

Pitch Angle Scattering of Energetic Electrons by BBFs

Field line curvature scattering by the magnetic field structure associated with bursty bulk flows (BBFs) has been studied, using simulated output fields from the Lyon-Fedder-Mobarry global magnetohydrodynamic code for specified solar wind input. There are weak magnetic field strength (B) regions adjacent to BBFs observed in the simulations. We show that these regions can cause strong scattering where the first adiabatic invariant changes by several factors within one equatorial crossing of energetic electrons of a few kiloelectron volts when the BBFs are beyond 10RE geocentric in the tail. Scattering by BBFs decreases as they move toward the Earth or when the electron energy decreases. For radiation belt electrons near or inside geosynchronous orbit we demonstrate that the fields associated with BBFs can cause weak scattering where the fractional change of the first invariant (μ0) within one equatorial crossing is small, but the change due to several crossings can accumulate. For the weak scattering case we developed a method of calculating the pitch angle diffusion coefficient Dαα. Dαα for radiation belt electrons for one particular BBF were calculated as a function of initial energy, equatorial pitch angle, and radial location. These Dαα values were compared to calculated Dαα for a dipole field with no electric field. We further compared Dαα values with that of stretched magnetic fields calculated by Artemyev et al. (2013, https://doi.org/10.5194/angeo-31-1485-2013) at r≈7RE. Results show that scattering by BBFs can be comparable to the most highly stretched magnetic field they studied.

Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025788

Van Allen Probes

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are limited by half of the equatorial electron gyrofrequency, suggesting the importance of wave ducting. Modulation periods are typically between about 0.5 and 5 minutes, and they increase with the in-situ measured plasma number density. This increase is consistent with the main mechanisms suggested to explain the origin of the QP modulation. Two-point measurements performed by the Van Allen Probes are used to estimate a typical spatial extent of the emissions to about 1RE in radial distance and 1.5 hours in magnetic local time. Detailed wave analysis shows that the emissions are right-hand circularly polarized, and they usually come from several different directions simultaneously. They, however, predominantly propagate at rather low wave normal angles and away from the geomagnetic equator.

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are limited by half of the equatorial electron gyrofrequency, suggesting the importance of wave ducting. Modulation periods are typically between about 0.5 and 5 minutes, and they increase with the in-situ measured plasma number density. This increase is consistent with the main mechanisms suggested to explain the origin of the QP modulation. Two-point measurements performed by the Van Allen Probes are used to estimate a typical spatial extent of the emissions to about 1RE in radial distance and 1.5 hours in magnetic local time. Detailed wave analysis shows that the emissions are right-hand circularly polarized, and they usually come from several different directions simultaneously. They, however, predominantly propagate at rather low wave normal angles and away from the geomagnetic equator.

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are limited by half of the equatorial electron gyrofrequency, suggesting the importance of wave ducting. Modulation periods are typically between about 0.5 and 5 minutes, and they increase with the in-situ measured plasma number density. This increase is consistent with the main mechanisms suggested to explain the origin of the QP modulation. Two-point measurements performed by the Van Allen Probes are used to estimate a typical spatial extent of the emissions to about 1RE in radial distance and 1.5 hours in magnetic local time. Detailed wave analysis shows that the emissions are right-hand circularly polarized, and they usually come from several different directions simultaneously. They, however, predominantly propagate at rather low wave normal angles and away from the geomagnetic equator.

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS waves are most intense, the electron butterfly distribution is inhibited by exohiss and chorus, and electrons are considerably accelerated by combined scattering of MS and chorus waves. The simulated electron pitch angle distributions exhibit the variation trend consistent with the observations. Our results strongly suggest that competition and cooperation between resonant interactions with concurrently occurring magnetospheric waves need to be carefully treated in modeling and comprehending the radiation belt electron dynamics.

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study

A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 80 keV protons and could be generated by an unstable \textquotedblleftbump on tail\textquotedblright distribution of protons simultaneously observed with the wave. The estimate of the azimuthal wave number m made from the drift resonance condition gives a value of about -100, i.e., it is a westward propagating azimuthally small-scale wave.

Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079596

Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction

Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study

A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 80 keV protons and could be generated by an unstable \textquotedblleftbump on tail\textquotedblright distribution of protons simultaneously observed with the wave. The estimate of the azimuthal wave number m made from the drift resonance condition gives a value of about -100, i.e., it is a westward propagating azimuthally small-scale wave.

Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079596

Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction



  17      18      19      20      21      22