Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1109 entries in the Bibliography.


Showing entries from 501 through 550


2017

Oxygen cyclotron harmonic waves observed by the Van Allen Probes

Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere (L~5) off the magnetic equator (MLAT~-7.5\textdegree) during a magnetic storm. We find that the multiple-harmonic emissions have their PSD peaks at 2~8 equatorial oxygen gyro-harmonics (f~nfO+, n=2~8) while the fundamental mode (n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally these electromagnetic emissions are linear polarized. Different from the equatorial noise emission propagating very obliquely, these emissions have moderate wave normal angles (about 40\textdegree~60\textdegree) which predominately become larger as the harmonic number increases. Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions might play an important role in the dynamic variation of radiation belt electrons.

Xiongdong, Yu; Zhigang, Yuan; Dedong, Wang; Shiyong, Huang; Haimeng, Li; Tao, Yu; Zheng, Qiao;

Published by: Science China: Earth Sciences      Published on: 03/2017

YEAR: 2017     DOI: 10.1007/s11430-016-9024-3

Oxygen Cyclotron Harmonic Waves; Radiation belt; Ring current ions; Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches \~ 35\textendash95 pT in the case of distinct butterfly distributions with BI > 1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80\%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be \~100; (2) the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (\~0.1); (3) the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and (4) the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of \~80 keV protons. We show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13\textendash14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Ultra-relativistic radiation belt extinction and ULF wave radial diffusion: Modeling the September 2014 extended dropout event

In September 2014 an unusually long-lasting (≳10 days) ultra-relativistic electron flux depletion occurred in the outer radiation belt despite ongoing solar wind forcing. We simulate this period using a ULF wave radial diffusion model, driven by observed ULF wave power coupled to flux variations at the outer boundary at L* = 5, including empirical electron loss models due to chorus and hiss wave scattering. Our results show that unexplained rapid main phase loss, that depletes the belt within hours, is essential to explain the observations. Such ultra-relativistic electron extinction decouples the prestorm and poststorm fluxes, revealing the subsequent belt dynamics to be surprisingly independent of prestorm flux. However, once this extinction is included, ULF wave transport and coupling to the outer boundary explain the extended depletion event and also the eventual flux recovery. Neither local acceleration nor ongoing losses from hiss or chorus wave scattering to the atmosphere are required.

Ozeke, Louis; Mann, Ian; Murphy, Kyle; Sibeck, David; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL072811

radial diffusion; Radiation belt; ULF waves; ultrarelativistic; Van Allen Probes; wave-particle interactions

Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume

We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas

Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the resonant beam of electrons. We analyze a single wave case and demonstrate that the instability occurs due to a Krein collision, which manifests as a coupling between a negative and positive energy mode. This analysis revealed that the nonlinear evolution of the spectrally stable fixed-points of the self-consistent Hamiltonian develop a sub-packet structure similar to that of space observations. We then analyze the case of two whistler waves to show that the model reproduces the nonlinear harmonic generation and leads to a hypothesis for the closely spaced frequency hopping observed in laboratory experiments and space data.

Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik;

Published by: Physics of Plasmas      Published on: 03/2017

YEAR: 2017     DOI: 10.1063/1.4977539

Dispersion relations; Electron beams; SingingEigenvalues; Van Allen Probes; Whistler waves

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s-1) aboard the two Van Allen Probes spacecraft\textemdash9 h (0800\textendash1200 UT and 1700\textendash2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430\textendash0900, and magnetic latitudes were ~15 and ~5\textdegree during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550\textendash650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 \textperiodcentered r2/r02), with the characteristic scale r0 around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.

Agapitov, O.; Blum, L.; Mozer, F.; Bonnell, J.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL072701

chorus spatial scales; Van Allen Probes; VLF waves

Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event

Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of \textquotedblleftdispersionless\textquotedblright injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth\textquoterights magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization front is the most penetrating. At geosynchronous orbit (6.6 RE), the electron distributions do not have a classic power law fit but instead a bump on tail centered on \~120 keV during dispersionless electron injections. However, electron distributions of injections associated with magnetic flux pileup in the magnetotail (13 RE) do not show such a signature. We surmise that an additional resonant acceleration occurs in between these locations. We relate the acceleration mechanism to the electron drift resonance with ultralow frequency waves localized in the inner magnetosphere.

Kronberg, E.; Grigorenko, E.; Turner, D.; Daly, P.; Khotyaintsev, Y.; Kozak, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023551

Acceleration; current wedge; Dipolarization; particle injections; substorm; ULF waves; Van Allen Probes

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of math formula5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L \~ 5\textendash8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

The role of the convection electric field in filling the slot region between the inner and outer radiation belts

The Van Allen Probes have reported frequent flux enhancements of 100s keV electrons in the slot region, with lower energy electrons exhibiting more dynamic behavior at lower L shells. Also, in situ electric field measurements from the Combined Release and Radiation Effects Satellite, Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Van Allen Probes have provided evidence for large-scale electric fields at low L shells during active times. We study an event on 19 February 2014 where hundreds of keV electron fluxes were enhanced by orders of magnitude in the slot region and electric fields of 1\textendash2 mV/m were observed below L = 3. Using a 2-D guiding center particle tracer and a simple large-scale convection electric field model, we demonstrate that the measured electric fields can account for energization of electrons up to at least 500 keV in the slot region through inward radial transport.

Califf, S.; Li, X.; Zhao, H.; Kellerman, A.; Sarris, T.; Jaynes, A.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023657

convection; electric field; electrons; Slot region; Van Allen Probes

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultra-low frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred two days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the pre-midnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be \~100; (2) the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (\~0.1); (3) the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and (4) the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of \~80 keV protons. We show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

Transverse eV ion heating by random electric field fluctuations in the plasmasphere

Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2\textendash3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07\textendash0.2 eV/h for protons and 0.007\textendash0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti\~0.3Ti\~0.3 eV could potentially explain the observations.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Blum, L.;

Published by: Physics of Plasmas      Published on: 02/2017

YEAR: 2017     DOI: 10.1063/1.4976713

electric fields; Electrostatic Waves; protons; Van Allen Probes; Wave power; Whistler waves

Van Allen Probes observation of a 360\textdegree phase shift in the flux modulation of injected electrons by ULF waves

We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of \~450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (\~50 to 150 keV) across the estimated resonant energy (\~104 keV) is \~360\textdegree. This phase relationship is different from the characteristic 180\textdegree phase shift as expected from the drift-resonance theory. We speculate that the additional 180\textdegree phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic particle signatures in the drift-resonance theory, which indicates a coupling effect between the magnetotail and the radiation belt and helps to better understand the wave-particle interaction in the magnetosphere.

Chen, X.-R.; Zong, Q.-G.; Zhou, X.-Z.; Blake, Bernard; Wygant, J.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL071252

drift resonance; injection; PSD gradient; ULF waves; Van Allen Probes

Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume

We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.

Woodroffe, J.; Jordanova, V.; Funsten, H.; Streltsov, A.; Bengtson, M.; Kletzing, C.; Wygant, J.; Thaller, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2015JA022219

Ducting; Van Allen Probes; wave-particle interactions; Whistlers

Amplitude\textendashfrequency characteristics of ion\textendashcyclotron and whistler-mode waves from Van Allen Probes data

Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion\textendashcyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency\textendashtime characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particles, and their pitch-angle distribution on the wave generation. The ducted propagation of waves plays an important role in their generation during the given event. The chorus VLF emissions observed in this event cannot be explained by kinetic cyclotron instability, and their generation requires much sharper changes (\textquotedblleftsteps\textquotedblright) for velocity distributions than those measured by energetic particle detectors on Van Allen Probes satellites.

Lyubchich, A.; Demekhov, A.; Titova, E.; Yahnin, A.;

Published by: Geomagnetism and Aeronomy      Published on: 02/2017

YEAR: 2017     DOI: 10.1134/S001679321701008X

Van Allen Probes

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Blum, L.; Bonnell, J.; Agapitov, O.; Paulson, K.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes

Externally driven plasmaspheric ULF waves observed by the Van Allen Probes

We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultralow frequency (ULF) waves. The waves exhibited strong spectral power in the 5\textendash40 mHz band and included multiharmonic toroidal waves visible up to the eleventh harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined by the cross-phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6\textendash5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this \textquotedblleftsuper saturated\textquotedblright plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.

Takahashi, Kazue; Denton, Richard; Kurth, William; Kletzing, Craig; Wygant, John; Bonnell, John; Dai, Lei; Min, Kyungguk; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2014JA020373

multispacecraft observation; plasmasphere; ULF waves; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important\textemdashand potentially dominant\textemdashsource of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off,\textquotedblright geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to ~0.8 for low-μ electrons (time lag ~ 0 day) and ~0.7 for high-μ electrons (time lag ~ 1\textendash2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements.

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023658

Geomagnetic storms; magnetospheric substorms; Phase space density; radiation belt electron content; radiation belt electrons; Solar wind; Van Allen Probes

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

Spectra of keV protons related to ion-cyclotron wave packets

We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that show steeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

Khazanov, K.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.;

Published by: Physics of Plasmas      Published on: 01/2017

YEAR: 2017     DOI: http://dx.doi.org/10.1063/1.4973323

Diffusion; Particle precipitation; protons; Van Allen Probes; wave particle interactions; Wave power

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional math formula drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements\textemdashgenerally between 0.2 and 2 eV (2000\textendash20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023047

plasmasphere; Van Allen Probes

Transitional behavior of different energy protons based on Van Allen Probes observations

Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here we statistically analyze ~1 eV to 50 keV hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy ranges, which is consistent with previous theory predictions. Using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.

Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071324

Transition in drift behavior; UBK method; Van Allen Probes

Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV\textendash200 keV in resonant interactions with a single VLF rising tone on a time scale of 10\textendash100 ms.

Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023429

nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 fcp and fLHR. The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood.

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

Acceleration at Dipolarization Fronts in the Inner Magnetosphere

During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds keV. Plasma pressure is the source of global storm-time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts in the magnetotail. Because of significant differences between the ambient magnetic field and the dipolarization front properties in the magnetotail and the inner magnetosphere, the physical mechanisms of ion acceleration at dipolarization fronts in these two regions may also be different. In this paper we discuss a new acceleration mechanism enabled by stable trapping of ions at the azimuthally localized dipolarization fronts. It is shown that trapping can provide a robust mechanism of ion energization in the inner magnetosphere even in the absence of large electric fields.

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016ja023304

injections; ring current; trapping; Van Allen Probes

Climatology of high-β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the \~45 keV to \~600 keV proton energy range in the inner magnetosphere (L < 5.8) has been constructed. In this paper we report this climatology of such high-β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high-β events in the RBSPICE energy range are associated with postdusk/premidnight sector particle injections or plasma patches and can last from minutes to hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high-β events during relatively minor geomagnetic storms and examples of very long duration high-β plasmas. We show that high-β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an underappreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022513

climatology; high-beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after \~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. The cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch angle, energy, and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

Drozdov, A; Shprits, Y; Aseev, N.; Kellerman, A.; Reeves, G.;

Published by: Space Weather      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/swe.v15.110.1002/2016SW001426

radial diffusion; Radiation belts; Van Allen Probes; VERB code

EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013\textendash2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types\textemdashwaves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL072316

EMIC waves; inner magnetosphere; multipoint; spatial scales; Van Allen Probes

Geospace Magnetic Storms and the Van Allen Radiation Belts

Reeves, G.; Daglis, I.;

Published by:       Published on:

YEAR: 2017     DOI:

An Overview of Early Results from the Radiation Belt Storm Probes Energetic Particle, Composition, and Thermal Plasma Suite on NASA\textquoterights Van Allen Probes Mission

Spence, H.; Reeves, G.; Kessel, R.;

Published by:       Published on:

YEAR: 2017     DOI:

Van Allen Probes

2016

Climatology of high β plasma measurements in Earth\textquoterights inner magnetosphere

Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high resolution measurements of Earth\textquoterights ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high beta (β) plasma events (defined here as β>1) as measured by the RBSPICE instrument in the \~45-keV to \~600-keV proton energy range in the inner magnetosphere (L<5.8) has been constructed. In this paper we report this climatology of such high β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high β events in the RBSPICE energy range are associated with post-dusk/pre-midnight sector particle injections or plasma patches and can last from minutes to hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high β events during relatively minor geomagnetic storms and examples of very long duration high β plasmas. We show that high β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an under-appreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

Cohen, Ross; Gerrard, Andrew; Lanzerotti, Louis; Soto-Chavez, A.; Kim, Hyomin; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA022513

climatology; high beta plasma; inner magnetosphere; RBSPICE; Van Allen Probes

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that is of the order of hundred Debye lengths. The perpendicular to parallel scale ratio is larger than one in a qualitative agreement with the theoretical scaling relation. The amplitudes of EH electrostatic potentials are generally below 100 V. We determine the properties of the electron population trapped within EHs by making use of the Bernstein-Green-Kruskal analysis and via analysis of EH magnetic field signatures. The density of the trapped electron population is on average 20\% of the background electron density. The perpendicular temperature of the trapped population is on average 300 eV and is larger for faster EHs. We show that energy losses of untrapped electrons scattered by EHs in the inhomogeneous background magnetic field may balance the energization of trapped electrons.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4\textendash6 April and 18\textendash20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR\textquoterights spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

In situ statistical observations of Pc1 pearl pulsations and unstructured EMIC waves by the Van Allen Probes

We present here the first in situ statistical survey of structured Pc1 pearl pulsations compared with unstructured electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes spacecraft. This data set was compiled from observations spanning 8 September 2012 through 31 August 2015 and comprises over 1630 h of total EMIC wave activity, of which 291 h exhibited pearl structure. Additionally, we have identified 29 wave events demonstrating periodically oscillating wave packets, mostly about the magnetic equator, indicated by the reversal of Poynting flux along the background magnetic field. We have found several stark differences between Pc1 pearl pulsations and unstructured EMIC waves. While unstructured EMIC waves demonstrate the predicted behavior of a higher occurrence across the dayside with enhanced wave power at dusk, pearl pulsations occur uniformly across magnetic local time, with a small enhancement in the late morning sector. Pearl pulsations were more often observed during magnetospherically quiet periods, particularly in the late recovery period of geomagnetic storms. The mean excitation frequency of pearl pulsations was observed to be independent of the local ion cyclotron frequency, and individual wave investigations indicate that the modulation period also remained constant for the duration of the event over a finite range in L. We examine three possible generation mechanisms\textemdashthe bouncing wave packet model, modulation by ultralow-frequency Pc4 and Pc5 waves, and the formation of an ion cyclotron resonator\textemdashbut are unable to definitively confirm the validity of any one model.

Paulson, K.; Smith, C.; Lessard, M.; Torbert, R.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023160

EMIC waves; Pc1 pearl pulsations; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed three orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day timescales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off\textquotedblright, geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25\% of IP shocks are associated with prompt energization, and 14\% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

Schiller, Q.; Kanekal, S.; Jian, L.; Li, X.; Jones, A.; Baker, D.; Jaynes, A.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071628

electrons; IP shocks; Radiation belts; Van Allen Probes

Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes

It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results show that as the ratio of plasma frequency over electron gyrofrequency increases, EMIC wave power becomes progressively dominated by the helium band. There is a pronounced dawn-dusk asymmetry in the wave amplitude and the frequency spectrum. The frequency spectrum does not follow the commonly used single-peak Gaussian function. Incorporating these realistic EMIC wave frequency spectra into radiation belt models is expected to improve the quantification of EMIC wave scattering effects in ultrarelativistic electron dynamics.

Zhang, X.-J.; Li, W.; Thorne, R.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071158

EMIC waves; magnetic storm; outer radiation belt; relativistic electron loss; Van Allen Probes; Wave-particle interaction

Transitional behavior of different energy protons based on Van Allen Probes observations

Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here, we statistically analyze ~1 eV to 50 keV Hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy ranges, which is consistent with previous theory predictions. Using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.

Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli; Thorne, Richard; Reeves, Geoffrey; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071324

Transition in drift behavior; UBK method; Van Allen Probes



  9      10      11      12      13      14