Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 400 entries in the Bibliography.


Showing entries from 301 through 350


2015

On the use of drift echoes to characterize on-orbit sensor discrepancies

We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel\textquoterights drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo technique has provided a significant clue in resolving substantial flux discrepancies between two instruments measuring fluxes near 2 MeV.

O\textquoterightBrien, T.P.; Claudepierre, S.G.; Looper, M.D.; Blake, J.B.; Fennell, J.F.; Clemmons, J.H.; Roeder, J.L.; Kanekal, S.G.; Manweiler, J.W.; Mitchell, D.G.; Gkioulidou, M.; Lanzerotti, L.J.; Spence, H.E.; Reeves, G.D.; Baker, D.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020859

Van Allen Probes

Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1\textendash0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10-3 nT2, using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56\% of the time over the full chorus wave band, 60\% of the time for lower band chorus, and 59\% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.

Hartley, D.; Chen, Y.; Kletzing, C.; Denton, M.; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020808

chorus waves; EMFISIS; energetic electrons; Radiation belts; Van Allen Probes; wave-particle interactions

Field-aligned chorus wave spectral power in Earth\textquoterights outer radiation belt

Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave\textendashparticle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40\textdegree. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1\textendash100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 <= L <= 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E.; Haaland, S.; Daly, P.; Krasnoselskikh, V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-583-2015

Chorus-type whistler waves

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support that chorus from large L-shells, where it was previously considered unable to propagate into the plasmasphere, can in fact be the source of hiss.

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes

Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 - 108.3 keV) and relativistic (2 - 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 - 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes \~ 20 - 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus, or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L* = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020781

Van Allen Probes; magnetopause

Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents

The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A similar pattern coined \textquoteleftbanana current\textquoteright was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming \textquoterightbanana currents\textquoteright. Near Sym-H minimum, the \textquoterightbanana current\textquoteright is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.

Stephens, G.; Sitnov, M.; Ukhorskiy, A; Roelof, E.; Tsyganenko, N.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2015JA021700

eastward current; empirical geomagnetic field; magnetic storm; ring current; Van Allen Probes

2014

Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014GL062273

BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100\% and 20\% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60\%-80\% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 hours. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100\% and 20\% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60\%-80\% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 hours. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100\% and 20\% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60\%-80\% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 hours. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

First observation of rising-tone magnetosonic waves

Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90\textdegree and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be \textquotedbllefttemporally continuous\textquotedblright in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonlinear wave-particle interaction, as is the case with chorus and EMIC waves.

Fu, H.; Cao, J.; Zhima, Z.; Khotyaintsev, Y.; Angelopoulos, V.; ik, O.; Omura, Y.; Taubenschuss, U.; Chen, L.; Huang, S;

Published by: Geophysical Research Letters      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/grl.v41.2110.1002/2014GL061867

discrete; frequency sweep rate; magnetosonic wave; nonlinear wave-particle interaction; Plasmapause; rising tone

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

On long decays of electrons in the vicinity of the slot region observed by HEO3

Long decay periods of electron counts, which follow abrupt rises and last from weeks to months, have been observed by the HEO3 spacecraft in the vicinity of the slot region between the years 1998 and 2007. During the most stable decay periods as selected, e-folding timescales are extracted and statistically analyzed from observations as a function of L-shell and electron energy. A challenge is to reproduce the observed timescales from simulations of pitch angle diffusion by three acting waves\textendashthe plasmaspheric hiss, lightning-generated whistlers, and VLF transmitter waves. We perform full numerical simulations to accurately compute electron lifetimes. We choose to use the method and wave parameters proposed by Abel \& Thorne [1998] with the goal to assess whether they can reproduce lifetimes extracted from HEO observations. We show how hiss dominantly affect high energy electrons (E > 2 MeV) for L in [2, 3.5] and VLF transmitter waves control residency times of low energy electrons (<0.4 MeV) around L = 2. These interactions induce characteristic shapes of the lifetime profiles that will be discussed. We show how the wave amplitudes can be adjusted for the particular energy particles that are dominantly affected by one wave type only. Using these amplitudes, mean HEO lifetimes are reproduced within a factor 2 to 5. VLF occurrence rates and hiss amplitude turn out significantly higher than those proposed by Abel \& Thorne [1998]. The wide energy response of the sensors complicates the analysis because it blurs the electron lifetime dependence on energy, increases the overall lifetimes and reduces the differences between the different channel lifetimes. In particular, our simulations suggest the flux measured by an integrated energy sensor aboard HEO has a variable slope, i.e. a variable lifetime, during 10-20 days in our data, due to the faster decay of the low residency time particles while slower decaying particles control the steady decay. It can explain some of the multi-slopes decays observed by HEO. HEO electron long decay timescales are also compared to the timescales previously observed from SAMPEX and CRRES with differences attributed to factors such as instrument characteristic and different satellite orbits.

Ripoll, J.-F.; Chen, Y.; Fennell, J.; Friedel, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020449

electron; HEO; Slot region

Meeting Report: Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014, Boulder, Colorado

Following the conclusion of the 2014 Space Weather Week in Boulder, Colorado, the NOAA National Geophysical Data Center and Space Weather Prediction Center cohosted a 1 day workshop on the intercalibration of solar energetic particle (SEP) measurements. The overall purpose of this workshop was to discuss the intercalibration of SEP measurements from different instruments and different spacecraft, to foster new cooperative intercalibration efforts, and to identify a path forward for establishing a set of intercalibration guidelines. The detailed objectives of this workshop were described by Rodriguez and Onsager [2014]. Ten talks were given at the workshop (available at ftp://ftp.ngdc.noaa.gov/STP/publications/spe_intercal/), interspersed with extensive discussions. One outcome of these discussions is a recommendation that a set of guidelines be drafted for the on-orbit cross comparison of solar energetic particle measurements, similar to the first optical calibration guidelines developed for the Global Space-based Inter-Calibration System (GSICS) of the World Meteorological Organization (WMO) and the Coordination Group for Meteorological Satellites [Datla et al., 2009].

Rodriguez, Juan; Onsager, Terrance; Heynderickx, Daniel; Jiggens, Piers;

Published by: Space Weather      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/swe.v12.1110.1002/2014SW001134

cross calibration; interoperability; Solar Energetic Particles

Modeling Gradual Diffusion Changes in Radiation Belt Electron Phase Space Density for the March 2013 Van Allen Probes Case Study

March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two timescales of variation, diffusive and rapid dropout and restoration [Baker et al., 2014]. A radial diffusion model was applied to the month-long interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant <=400 MeV/G, but peaks in phase space density observed by the ECT instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. The model does well for much of the month-long interval, capturing three of four enhancements in phase space density which emerge from the outer boundary, while the strong enhancement following dropout on 17-18 March requires local acceleration at higher first invariant (M = 1000 MeV/G vs. 200 MeV/G) not included in our model. We have incorporated phase space density from ECT measurement at the outer boundary and plasmapause determination from the EFW instrument to separate hiss and chorus loss models.

Li, Zhao; Hudson, Mary; Jaynes, Allison; Boyd, Alexander; Malaspina, David; Thaller, Scott; Wygant, John; Henderson, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020359

March 2013; radial diffusion; Van Allen Probes

The Comprehensive Inner Magnetosphere-Ionosphere Model

Simulation studies of the Earth\textquoterights radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5\textendash9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

Fok, M.-C.; Buzulukova, N; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020239

inner magnetosphere; magnetosphere-ionosphere coupling; ring current; Radiation belts; Van Allen Probes

Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth\textquoterights atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5\textdegree \texttimes 0.5\textdegree grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 \textpm 0.9 and 0.4 \textpm 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 \textpm 2.2 and 0.6 \textpm 6.8 TECu respectively with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei;

Published by: Journal of Space Weather and Space Climate      Published on: 09/2014

YEAR: 2014     DOI: 10.1051/swsc/2014028

Ionosphere

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 \textendash 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: i) associated pressure enhancement, ii) the time duration of this enhancement, iii) and the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm-time inner magnetosphere.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes

Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of It\^o stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90\textdegree is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90\textdegree, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

Zheng, Liheng; Chan, Anthony; Albert, Jay; Elkington, Scot; Koller, Josef; Horne, Richard; Glauert, Sarah; Meredith, Nigel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020127

adiabatic invariant coordinates; diffusion equation; fully 3-D model; Radiation belt; stochastic differential equation

The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere

We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\textquoterights plasmasphere at locations away from the generation region.

Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014GL061414

magnetosonic waves; Van Allen Probes; wave excitation; wave propagation

The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere

We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\textquoterights plasmasphere at locations away from the generation region.

Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014GL061414

magnetosonic waves; Van Allen Probes; wave excitation; wave propagation

Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results

For over a decade now we have understood the response of the Earth\textquoterights radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satellites are able to measure all the critical particle populations and wave fields with unprecedented precision and resolution but only at the two spacecraft locations. Those spatially-localized observations can be extended globally using three-dimensional diffusion codes such as the DREAM model. We will discuss some of the recent Van Allen Probes observations that firmly demonstrate local acceleration by chorus and losses due to chorus-produced pitch angle scattering (as well as outward radial diffusion). We will look at observational evidence for the complex chain of processes that inject a \textquotedblleftseed population\textquotedblright, generate chorus, and ultimately drive radiation belt acceleration and loss. We will also discuss how local satellite observations can be generalized to simulate global dynamics using data-driven input and boundary conditions. RW1/J/IEIE0175/0001

Reeves, G.; Spence, H.; Henderson, M.; Tu, W.; Cunningham, G.; Chen, Y.; Blake, J.; Fennell, J.; Baker, D.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929879

Van Allen Probes

Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results

For over a decade now we have understood the response of the Earth\textquoterights radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satellites are able to measure all the critical particle populations and wave fields with unprecedented precision and resolution but only at the two spacecraft locations. Those spatially-localized observations can be extended globally using three-dimensional diffusion codes such as the DREAM model. We will discuss some of the recent Van Allen Probes observations that firmly demonstrate local acceleration by chorus and losses due to chorus-produced pitch angle scattering (as well as outward radial diffusion). We will look at observational evidence for the complex chain of processes that inject a \textquotedblleftseed population\textquotedblright, generate chorus, and ultimately drive radiation belt acceleration and loss. We will also discuss how local satellite observations can be generalized to simulate global dynamics using data-driven input and boundary conditions. RW1/J/IEIE0175/0001

Reeves, G.; Spence, H.; Henderson, M.; Tu, W.; Cunningham, G.; Chen, Y.; Blake, J.; Fennell, J.; Baker, D.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929879

Van Allen Probes

Chorus-driven acceleration of radiation belt electrons in the unusual temporal/spatial regions

Cyclotron resonance with whistler-mode chorus waves is an important mechanism for the local acceleration of radiation belt energetic electrons. Such acceleration process has been widely investigated during the storm times, and its favored region is usually considered to be the low-density plasmatrough with magnetic local time (MLT) from midnight through dawn to noon. Here we present two case studies on the chorus-driven acceleration of radiation belt electrons in some \textquotedblleftunusual\textquotedblright temporal /spatial regions. (1) The first event recorded by the Van Allen Probes during the nonstorm times from 21 to 23 February 2013. Within two days, a new radiation belt centering around L=5.8 formed and gradually merged with the original outer belt. The corresponding relativistic electron fluxes increased by a factor of up to 50, accompanied by strong chorus waves. The quasi-linear STEERB model, including the local acceleration of detected chorus waves, can basically reproduce the observed 0.2\textendash5.0 MeV electron flux enhancement at the center of new belt. These results clearly illustrate the importance of chorus-driven local acceleration during the nonstorm times. (2) The second event observed by the Van Allen Probes in the duskside (MLT\~18) region on 2 October 2013. The quasi-linear diffusion analysis of STEERB code shows that, even in the duskside region with large ratio between the electron plasma frequency and the electron gyrofrequency, the detected intense (\~0.5 nT) chorus waves can still effectively accelerate radiation belt electrons. These results clearly exhibit the broader effective acceleration regions than usually estimated, at least for this one example.

Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Zhu, Hui;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929875

Acceleration; Van Allen Belts; Van Allen Probes

Comparison of Energetic Electron Intensities Outside and Inside the Radiation Belts

The intensities of energetic electrons (~25 \textendash 800 keV) outside and inside Earth\textquoterights radiation belts are reported using measurements from THEMIS and Van Allen Probes during non-geomagnetic storm periods. Three intervals of current disruption/dipolarization events in August, 2013 were selected for comparison. The following results are obtained. (1) Phase space densities (PSDs) for the equatorially mirroring electron population at three values of the first adiabatic invariant (20, 70, and 200 MeV/G) at the outer radiation belt boundary are found to be one to three orders of magnitude higher than values measured just inside the radiation belt. (2) There is indication that substorm activity leads to PSD increases inside L = 5.5 in less than 1 hr. (3) Evidence for progressive inward transport of enhanced PSDs is found. (4) Reductions and enhancements in the PSDs over L-shells from 3.5 to 6 are found to occur rapidly in ~2 \textendash 3 hrs. These results suggest that (1) continual replenishments are required to maintain high levels of PSD for electrons at these energies, and (2) inward radial transport of these electrons occurs in a fast time scale of a few hrs.

T. Y. Lui, A.; Mitchell, D.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020049

Dipolarization; energetic electrons; Radiation belts; substorm; Van Allen Probes

Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves

We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth\textquoterights radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail inline image such that η < 5/2, the efficiency of nonlinear acceleration could be more effective than the conventional quasi-linear acceleration for 100 keV electrons.

Artemyev, A.; Vasiliev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.; Boscher, D.; Rolland, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1610.1002/2014GL061380

particle trapping; Radiation belts; Wave-particle interaction

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low frequency waves to undergo cyclic ray paths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Storm time response of the mid-latitude thermosphere: Observations from a network of Fabry-Perot interferometers

Observations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry-Perot interferometers (FPIs) deployed in the midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (towards the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 hours is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all-sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this time. We suggest that the large sustained apparent downward winds arise from contamination of the spectral profile of the nominal thermospheric 630.0-nm emission by 630.0-nm emission from a different (non-thermospheric) source. Modeling demonstrates that the effect of an additional population of 630.0-nm photons, with a distinct velocity and temperature distribution, introduces an apparent Doppler shift when the combined emission from the two sources are analyzed as a single population. Thus, the apparent Doppler shifts should not be interpreted as the bulk motion of the thermosphere, calling into question results from previous FPI studies of mid-latitude storm-time thermospheric winds. One possible source of contamination could be fast O related to the infusion of low-energy O+ ions from the magnetosphere. The presence of low-energy O+ is supported by observations made by the Helium, Oxygen, Proton, and Electron spectrometer instruments on the twin Van Allen Probes spacecrafts, which show an influx of low-energy ions during this period. These results emphasize the importance of distributed networks of instruments in understanding the complex dynamics that occur in the upper atmosphere during disturbed conditions.

Makela, Jonathan; Harding, Brian; Meriwether, John; Mesquita, Rafael; Sanders, Samuel; Ridley, Aaron; Castellez, Michael; Ciocca, Marco; Earle, Gregory; Frissell, Nathaniel; Hampton, Donald; Gerrard, Andrew; Noto, John; Martinis, Carlos;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA019832

geomagnetic storm response; thermospheric winds; Van Allen Probes

The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly\textquoterights Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth\textquoterights magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth\textquoterights magnetotail during the about 6 months that comprise orbital phase 2.

Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.;

Published by: Space Science Reviews      Published on: 06/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0055-5

Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma

The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly\textquoterights Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth\textquoterights magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth\textquoterights magnetotail during the about 6 months that comprise orbital phase 2.

Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.;

Published by: Space Science Reviews      Published on: 06/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0055-5

Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm

The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17\textendash19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1\textendash0.5fce (the electron equatorial gyrofrequency), with a peak spectral density \~10-4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102\textendash103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation.

Xiao, Fuliang; Yang, Chang; He, Zhaoguo; Su, Zhenpeng; Zhou, Qinghua; He, Yihua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2014

YEAR: 2014     DOI: 10.1002/2014JA019822

Van Allen Probes

Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm

The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17\textendash19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1\textendash0.5fce (the electron equatorial gyrofrequency), with a peak spectral density \~10-4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102\textendash103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation.

Xiao, Fuliang; Yang, Chang; He, Zhaoguo; Su, Zhenpeng; Zhou, Qinghua; He, Yihua; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2014

YEAR: 2014     DOI: 10.1002/2014JA019822

Van Allen Probes

The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth\textquoterights magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations.

Posner, A.; Hesse, M.; St. Cyr, O.;

Published by: Space Weather      Published on: 04/2014

YEAR: 2014     DOI: 10.1002/swe.v12.410.1002/2013SW001007

Assessment; Space Hardware; SWx Forecasting; Van Allen Probes

Van Allen Probes observations of direct wave-particle interactions

Quasiperiodic increases, or \textquotedblleftbursts,\textquotedblright of 17\textendash26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75\textendash80\textdegree, while fluxes at 90\textdegree and <60\textdegree remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15\textendash35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfv\ en boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time.

Fennell, J.; Roeder, J.; Kurth, W.; Henderson, M.; Larsen, B.; Hospodarsky, G.; Wygant, J.; Claudepierre, J.; Blake, J.; Spence, H.; Clemmons, J.; Funsten, H.; Kletzing, C.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL059165

Van Allen Probes

Application and testing of the L * neural network with the self-consistent magnetic field model of RAM-SCB

We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L* neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained networks and validated by the tracing method in the International Radiation Belt Environment Modeling (IRBEM) library. The accuracy of all L* neural networks with different underlying magnetic field models is evaluated by applying the electron phase space density (PSD)-matching technique derived from the Liouville\textquoterights theorem to the Van Allen Probes observations. Results indicate that the uncertainty in the predicted L* is statistically (75\%) below 0.7 with a median value mostly below 0.2 and the median absolute deviation around 0.15, regardless of the underlying magnetic field model. We found that such an uncertainty in the calculated L* value can shift the peak location of electron phase space density (PSD) profile by 0.2 RE radially but with its shape nearly preserved.

Yu, Yiqun; Koller, Josef; Jordanova, Vania; Zaharia, Sorin; Friedel, Reinhard; Morley, Steven; Chen, Yue; Baker, Daniel; Reeves, Geoffrey; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019350

Van Allen Probes

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90\% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent of the dropout. THEMIS and the Van Allen Probes observed telltale signatures of loss due to magnetopause shadowing and subsequent outward radial transport, including similar loss of energetic ring current ions. However, Van Allen Probes observations suggest that another loss process played a role for multi-MeV electrons at lower L shells (L* < ~4).

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase dropout exhibited enhanced losses to the atmosphere at L* < 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in <4 h. Based on POES observations of precipitating >1 MeV electrons and energetic protons, SAMPEX >1 MeV electrons, and ground observations of band-limited Pc1-2 wave activity, we show that this sudden loss was consistent with pitch angle scattering by electromagnetic ion cyclotron waves in the dusk magnetic local time sector at 3 < L* < 4. At 4 < L* < 5, local acceleration was also active during the main and early recovery phases, when growing peaks in electron PSD were observed by both Van Allen Probes and THEMIS. This acceleration corresponded to the period when IMF Bz was southward, the AE index was >300 nT, and energetic electron injections and whistler-mode chorus waves were observed throughout the inner magnetosphere for >12 h. After this period, Bz turned northward, and injections, chorus activity, and enhancements in PSD ceased. Overall, the outer belt was depleted by this storm. From the unprecedented level of observations available, we show direct evidence of the competitive nature of different wave-particle interactions controlling relativistic electron fluxes in the outer radiation belt.

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Design of a spacecraft integration and test facility at The Johns Hopkins University Applied Physics Laboratory

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is dedicated to solving critical challenges as set forth by the National Aeronautics and Space Administration and the Department of Defense. JHU/APL participates fully in the nation\textquoterights formulation of space science and exploration priorities, providing the needed science, engineering, and technology, including the production and operation of unique spacecraft, instruments, and subsystems.

Liggett, William; Handiboe, Jon; Theus, Eugene; Hartka, Ted; Navid, Hadi;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836273

Spacecraft Design

Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes

The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 \textquotedblleftdouble-dip\textquotedblright storm. We show that in order to explain the very different behavior in the two \textquotedblleftdips,\textquotedblright diffusion in all three dimensions (energy, pitch angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The results illustrate the utility of the high resolution, comprehensive set of Van Allen Probes\textquoteright measurements in studying the balance between source and loss in the radiation belt, a principal goal of the mission.

Tu, Weichao; Cunningham, G.; Chen, Y.; Morley, S.; Reeves, G.; Blake, J.; Baker, D.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL058819

Van Allen Probes

Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 \textpm 0.5). This reveals graphically that both \textquotedblleftcompeting\textquotedblright mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL058942

Van Allen Probes

Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input

The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a test of the model. We also used the PSD generated from the Shin and Lee model as constraint and examined it by computing the error relative to the LANL geosynchronous spacecraft data-driven run. The calculation shows that there is overestimation and underestimation at different times; however, the direct insertion of the statistical model can be used to drive the radial diffusion model generally, producing the phase space density dropout and increase during a storm. Having this model based on a solar wind parameterized data set, we can run the radial diffusion model for storms when particle measurements are not available as input. We chose the Whole Heliosphere Interval as an example and compared the result with MHD/test-particle simulations, obtaining better agreement with GPS measurement using the diffusion model, which incorporates atmospheric losses and an initial equilibrium radial profile.

Li, Zhao; Hudson, Mary; Chen, Yue;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019320

outer boundary; radial diffusion; Radiation belt; Van Allen Probes

REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth\textquoterights outer radiation belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019431

Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions

REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth\textquoterights outer radiation belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019431

Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions

REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth\textquoterights Outer Radiation Belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.;

Published by: Journal of Geophysical Research      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019431

RBSP; Van Allen Probes

REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth\textquoterights Outer Radiation Belt

We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean and median pitch angle distributions in the area but also error estimates of the average distributions. Preliminary verification and validation results demonstrate the reliable performance of this model. Usage of REPAD is mainly to predict the full pitch angle distribution of fluxes along a given magnetic field line, or even on a given drift shell, based upon one single unidirectional or omnidirectional flux measurement anywhere on that field line. This can be particularly useful for data assimilation, which usually has large tolerance on data errors. In addition, relatively small variations in pitch angle distributions measured at L shell between ~ 4 and 5 justify the assumption of fixed pitch angle distributions at GPS equatorial crossings (L ~ 4.2) used in our previous studies.

Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.;

Published by: Journal of Geophysical Research      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019431

RBSP; Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes



  3      4      5      6      7      8