Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 506 entries in the Bibliography.


Showing entries from 201 through 250


2018

Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017GL076382

magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction

Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma sheet populations. The ring current buildup during the first subphase was caused by the penetration of a relatively low-energy population that had existed in the plasma sheet during a prolonged prestorm northward IMF interval. The deeper penetration of the lower-energy population was responsible for the second subphase. The third subphase, where the storm was unexpectedly intensified to a Dst/SYM-H level of <-200 nT, was caused by the penetration of a hot, dense plasma sheet population. We attribute the hot, dense population to the entry of hot, dense solar wind into the plasma sheet and/or ion heating/acceleration in the near-Earth plasma sheet associated with magnetotail activity such as reconnection and dipolarization.

Keika, Kunihiro; Seki, Kanako; e, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024462

enhancements of oxygen ions of ionospheric origin; plasma transport from the plasma sheet into the inner magnetosphere; RBSPICE; unexpected intensification of the magnetic storm; Van Allen Probes

2017

The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters

Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90\textdegree wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.

Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2016JA023801

magnetosonic wave; parametric study; Radiation belt; Van Allen Probes; Wave-particle interaction

The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters

Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90\textdegree wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.

Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2016JA023801

magnetosonic wave; parametric study; Radiation belt; Van Allen Probes; Wave-particle interaction

Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping

Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15\textendash100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N \~ 100\textendash200. Further comparing measured refractive indexes with theoretical estimates incorporating hot plasma corrections to the wave dispersion, we provide the first experimental demonstration that suprathermal electrons indeed control the upper limit of the refractive index of highly oblique whistler mode waves. Such results further support the importance of incorporating very oblique waves into radiation belt models.

Ma, Q.; Artemyev, A.; Mourenas, D.; Li, W.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL075892

Landau damping; maximum refractive index; oblique chorus waves; thermal electron effects; Van Allen Probes; Van Allen Probes observation

Chorus Wave Modulation of Langmuir Waves in the Radiation Belts

Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.

Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard; Zhou, Meng; Kurth, William; Hospodarsky, George; Funsten, Herbert; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL075877

Chorus wave; Landau resonance; Langmuir wave; nonlinear interaction; Radiation belt; Van Allen Probes; wave modulation

Chorus Wave Modulation of Langmuir Waves in the Radiation Belts

Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.

Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard; Zhou, Meng; Kurth, William; Hospodarsky, George; Funsten, Herbert; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL075877

Chorus wave; Landau resonance; Langmuir wave; nonlinear interaction; Radiation belt; Van Allen Probes; wave modulation

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016

Using measurements from the Van Allen Probes, a penetration event of 10s \textendash 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of 10s \textendash 100s of keV electron penetration is completely different from 10s of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L-shells, should be MLT-localized.

Zhao, H.; Baker, D.; Califf, S.; Li, X.; Jaynes, A.; Leonard, T.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017JA024558

Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016

Using measurements from the Van Allen Probes, a penetration event of 10s \textendash 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of 10s \textendash 100s of keV electron penetration is completely different from 10s of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L-shells, should be MLT-localized.

Zhao, H.; Baker, D.; Califf, S.; Li, X.; Jaynes, A.; Leonard, T.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017JA024558

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet, we cannot rule out the possibility that the drift waves are produced by the anti-parallel current associated with the fast flows, leaving the source for the electron holes unexplained.

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet, we cannot rule out the possibility that the drift waves are produced by the anti-parallel current associated with the fast flows, leaving the source for the electron holes unexplained.

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet, we cannot rule out the possibility that the drift waves are produced by the anti-parallel current associated with the fast flows, leaving the source for the electron holes unexplained.

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm

There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measured time scale of the electron increase is inferred to be consistent with this nonlinear theory.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024540

chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes

Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS and POES satellites

Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its dominant generation mechanism. In the pre-shock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainly originated from the dayside chorus waves. On arrival of the shock, the removal of pre-existing dayside chorus and the insignificant variation of low-frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of pre-noon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024470

Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at < 600 keV only. MMS reveals detailed substructure within the largest electron injection. A relationship between injected electrons with energy < 60 keV and enhanced whistler-mode chorus wave activity is also established from Van Allen Probes and MMS. Drift mapping using a simplified magnetic field model provides estimates of the dispersionless injection boundary locations as a function of universal time, magnetic local time, and L-shell. The analysis reveals that at least five electron injections, which were localized in magnetic local time, preceded a larger injection of both electrons and ions across nearly the entire nightside of the magnetosphere near geosynchronous orbit. The larger, ion and electron injection did not penetrate to L < 6.6, but several of the smaller, electron injections penetrated to L < 6.6. Due to the discrepancy between the number, penetration depth, and complexity of electron vs. ion injections, this event presents challenges to the current conceptual models of energetic particle injections.

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

A neural network model of three-dimensional dynamic electron density in the inner magnetosphere

A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The DEN3D model takes spacecraft location and time series of solar and geomagnetic indices (F10.7, SYM-H, and AL) as inputs. It can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2. Its predictive ability on out-of-sample data is tested on field-aligned density profiles from the IMAGE satellite. DEN3D\textquoterights predictive ability provides unprecedented opportunities to gain insight into the 3-D behavior of the inner magnetospheric plasma density at any time and location. As an example, we apply DEN3D to a storm that occurred on 1 June 2013. It successfully reproduces various well-known dynamic features in three dimensions, such as plasmaspheric erosion and recovery, as well as plume formation. Storm time long-term density variations are consistent with expectations; short-term variations appear to be modulated by substorm activity or enhanced convection, an effect that requires further study together with multispacecraft in situ or imaging measurements. Investigating plasmaspheric refilling with the model, we find that it is not monotonic in time and is more complex than expected from previous studies, deserving further attention.

Chu, X.; Bortnik, J.; Li, W.; Ma, Q.; Denton, R.; Yue, C.; Angelopoulos, V.; Thorne, R.; Darrouzet, F.; Ozhogin, P.; Kletzing, C.; Wang, Y.; Menietti, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024464

Simulated prompt acceleration of multi-MeV electrons by the 17 March 2015 interplanetary shock

Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by \~ 1 MeV is inferred on less than a drift time scale as seen in prior shock compression events, which launch a magetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD-test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short-lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.

Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiaochen; Thaller, Scott; Wiltberger, Michael; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024445

17 March 2015; MeV electron acceleration; Radiation belt; test-particle simulation; Van Allen Probes

Butterfly distribution of Earth\textquoterights radiation belt relativistic electrons induced by dayside chorus

Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth\textquoterights radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11\textendash13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed around the location L = 4.52, corresponding to the presence of enhanced dayside chorus. Using a Gaussian distribution fit to the observed chorus spectra, we calculate the bounce-averaged diffusion rates and solve two-dimensional Fokker-Planck equation. Numerical results demonstrate that acceleration by dayside chorus can yield the electron flux evolution both in the energy and butterfly pitch angle distribution comparable to the observation, providing a further evidence for the formation of butterfly distribution of relativistic electrons driven by very low frequency (VLF) plasma waves.

Jin, YuYue; Yang, Chang; He, Yihua; Liu, Si; Zhou, Qinghua; Xiao, Fuliang;

Published by: Science China Technological Sciences      Published on: 09/2017

YEAR: 2017     DOI: 10.1007/s11431-017-9067-y

butterfly distribution relativistic electrons radiation belts wave-particle interaction dayside chorus; Van Allen Probes

The characteristic response of whistler mode waves to interplanetary shocks

Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

Yue, Chao; Chen, Lunjin; Bortnik, Jacob; Ma, Qianli; Thorne, Richard; Angelopoulos, Vassilis; Li, Jinxing; An, Xin; Zhou, Chen; Kletzing, Craig; Reeves, Geoffrey; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024574

IP shocks; MLT dependent; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes; whistler mode chorus

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp \textquotelefttop-hat\textquoteright shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

Storm time empirical model of O + and O 6+ distributions in the magnetosphere

Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic storms. At high energies (~200 keV) the flux of O+ and O6+ are seen to become comparable in the outer magnetosphere. Moreover, while the density of O+ is far higher than O6+, the two charge states have comparable pressures in the outer magnetosphere. The temperature of O6+ is generally higher than that of O+, because the O6+ is injected from preheated magnetosheath populations before undergoing further heating once in the magnetosphere. A comparison between the model results with O+ observations from the Magnetospheric Multiscale mission and the Van Allen Probes provides a validation of the model. In general, this empirical model agrees qualitatively well with the trends seen in both data sets. Quantitatively, the modeled density, pressure, and temperature almost always agree within a factor of at most 10, 5, and 2, respectively.

Allen, R.; Livi, S.; Vines, S.; Goldstein, J.; Cohen, I.; Fuselier, S.; Mauk, B.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024245

MMS mission; Polar mission; solar wind injection; storm time dynamics; Van Allen Probes; Van Allen Probes mission

Storm time empirical model of O + and O 6+ distributions in the magnetosphere

Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic storms. At high energies (~200 keV) the flux of O+ and O6+ are seen to become comparable in the outer magnetosphere. Moreover, while the density of O+ is far higher than O6+, the two charge states have comparable pressures in the outer magnetosphere. The temperature of O6+ is generally higher than that of O+, because the O6+ is injected from preheated magnetosheath populations before undergoing further heating once in the magnetosphere. A comparison between the model results with O+ observations from the Magnetospheric Multiscale mission and the Van Allen Probes provides a validation of the model. In general, this empirical model agrees qualitatively well with the trends seen in both data sets. Quantitatively, the modeled density, pressure, and temperature almost always agree within a factor of at most 10, 5, and 2, respectively.

Allen, R.; Livi, S.; Vines, S.; Goldstein, J.; Cohen, I.; Fuselier, S.; Mauk, B.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024245

MMS mission; Polar mission; solar wind injection; storm time dynamics; Van Allen Probes; Van Allen Probes mission

Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes

To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. The evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.

Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024487

EMIC wave; last closed drift shell; magnetopause shadowing; Phase space density; radiation belt dropout; Van Allen Probes

The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L (L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

Yue, Chao; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; An, Xin; Chappell, C.; Gerrard, Andrew; Lanzerotti, Louis; Shi, Quanqi; Reeves, Geoffrey; Spence, Harlan; Mitchell, Donald; Gkioulidou, Matina; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024421

bi-directional field-aligned; H+ Pitch angle distributions; plasmaspheric H+; radiation belt H+; ring current; Van Allen Probes; warm Plasma cloak

CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models

Numerical simulation studies of the Earth\textquoterights radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

Aryan, Homayon; Sibeck, David; Bin Kang, Suk-; Balikhin, Michael; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin; Kanekal, Shrikanth; Nagai, Tsugunobu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024159

Chorus and plasmaspheric hiss wave models; CIMI numerical simulations; Geomagnetic storm events; Radiation belt electron flux enhancements; Van Allen Probes; VLF waves; Wave-particle interaction

Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.

Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M.; Ergun, Robert; Russell, C.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.;

Published by: Geophysical Research Letters      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017GL074895

electric field response; interplanetary shock; magnetopause; Radiation belt; Van Allen Probes

Direct observation of generation and propagation of magnetosonic waves following substorm injection

Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernstein mode instability. In the frequency-time spectrograms, these emission lines exhibited a clear rising tone characteristic with a long duration of 15-25 mins, implying the additional contribution of other undiscovered mechanisms. Nearly at the same time, the magnetosonic waves arose at lower L-shells without substorm injections. The wave signals at two different locations, separated by ΔL up to 2.0 and by ΔMLT up to 4.2, displayed the consistent frequency-time structures, strongly supporting the hypothesis about the radial and azimuthal propagation of magnetosonic waves.

Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2017     DOI: 10.1002/2017GL074362

Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction

EMIC waves covering wide L shells: MMS and Van Allen Probes observations

During 04:45:00\textendash08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6\textendash9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > ~6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.

Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017JA023982

EMIC waves; MMS; solar wind dynamic pressure; Van Allen Probes

Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

We present an analysis of \textquotedblleftboomerang-shaped\textquotedblright pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90o pitch angle electrons, the phase change of the flux modulations across energy exceeds 180o, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Spence, H.; Blake, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017GL074006

drift resonance; interplanetary shock; localized waves; Radiation belts; ULF waves; Van Allen Probes; Wave-particle interaction

On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport

The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes\textquoteright MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctuations as recorded by the Van Allen Probes\textquoteright EMFISIS and EFW instruments, respectively. The flux oscillation amplitudes are then correlated with Phase Space Density gradients in the magnetosphere and with the ongoing radial diffusion process.

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023741

Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes

On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport

The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes\textquoteright MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctuations as recorded by the Van Allen Probes\textquoteright EMFISIS and EFW instruments, respectively. The flux oscillation amplitudes are then correlated with Phase Space Density gradients in the magnetosphere and with the ongoing radial diffusion process.

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023741

Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes

On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport

The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes\textquoteright MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctuations as recorded by the Van Allen Probes\textquoteright EMFISIS and EFW instruments, respectively. The flux oscillation amplitudes are then correlated with Phase Space Density gradients in the magnetosphere and with the ongoing radial diffusion process.

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023741

Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes

ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2013 and 2015 Storms

The 17 March 2015 St. Patrick\textquoterights Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the ECT instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick\textquoterights Day 2013 and 2015 events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023846

March 2013; March 2015; radial diffusion; Radiation belt; Van Allen Probes

VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons

Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation codes, we perform numerical calculations of the corresponding quasilinear pitch angle diffusion rates, allowing us to demonstrate the crucial role played by VLF waves from transmitters in energetic electron loss at L<2.5.

Ma, Qianli; Mourenas, Didier; Li, Wen; Artemyev, Anton; Thorne, Richard;

Published by: Geophysical Research Letters      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017GL073885

Electron scattering; Statistical wave model; Van Allen Probes; Van Allen Probes observation; VLF waves

Energetic electron precipitation and auroral morphology at the substorm recovery phase

It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based magnetometers, the Van Allen Probe satellites, Polar Operational Environmental Satellites (POES), and the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK). Here we undertake a detailed examination of two case studies. The selected two events suggest that the highest energy of EEP on those days occurred with auroral patch formation from postmidnight to dawn, coinciding with the substorm onset at local midnight. Measurements of the EISCAT radar showed ionization as low as 65 km altitude, corresponding to EEP with energies of about 500 keV.

Oyama, S.; Kero, A.; Rodger, C.; Clilverd, M.; Miyoshi, Y.; Partamies, N.; Turunen, E.; Raita, T.; Verronen, P.; Saito, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2016JA023484

auroral patch; EEP; Ionosphere; plasma wave; recovery phase; substorm; Van Allen Probes

Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts

Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7\textendash5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV\textendash1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1\textendash10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. The current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL073051

ECH waves; RBSP results; Van Allen Probes; Wave-particle interaction

Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves

This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, inline image, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (\~15\%) whose phase space density exhibits a local peak at energy \~20 keV. Given that the electron plasma-to-cyclotron frequency ratio is inline image, this energy corresponds to the particle speed inline image, where vA is the oxygen Alfv\ en speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic shell distribution. Kinetic linear dispersion theory then predicts unstable Bernstein modes at or near the harmonics of inline image and at propagation quasi-perpendicular to the background magnetic field, B0. If the cold ions are mostly protons, these unstable modes are characterized by a low compressibility ( inline image), a small phase speed (vph\~0.2vA), a relatively small ratio of the electric field energy to the magnetic field energy (between 10-4 and 10-3), and the Poynting vector directed almost parallel to B0. These linear properties are overall in good agreement with the properties of the observed waves. We demonstrate that superposition of the predicted unstable Bernstein modes at quasi-perpendicular propagation can produce the observed polarization properties, including the minimum variance direction on average almost parallel to B0.

Min, Kyungguk; Denton, Richard; Liu, Kaijun; Gary, Peter; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA023979

O+ Bernstein instability; O+ harmonic waves; O+ ring distribution; Van Allen Probes

A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers

We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to IMF discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, KH-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment.

Wang, Chih-Ping; Thorne, Richard; Liu, Terry; Hartinger, Michael; Nagai, Tsugunobu; Angelopoulos, Vassilis; Wygant, John; Breneman, Aaron; Kletzing, Craig; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023610

IMF discontinuity; inner magnetosphere; Kelvin-Helmholtz vortices; magnetosheath; Pc5 waves; plasma sheet; Van Allen Probes

Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models

Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth\textquoterights plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles (WNAs) of hiss waves in most regions do not depend strongly on substorm activity, except for the intense substorm-induced increase in WNAs in the nightside low L-region. The propagation angles of plasmaspheric hiss increase with increasing magnetic latitude or decreasing radial distance (L-value). The global hiss WNAs (the power-weighted averages in each grid) and amplitudes (medians) can be well reproduced by our empirical models.

Yu, J.; Li, L; Cao, J.; Chen, L.; Wang, J.; Yang, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023372

hiss amplitude model; hiss wave amplitude; Plasmaspheric Hiss; propagation angle model of hiss waves; substorm dependence; Van Allen Probes; wave normal angle

Roles of whistler-mode waves and magnetosonic waves in changing the outer radiation belt and the slot region

Using the Van Allen Probe long-term (2013 \textendash 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the relativistic electron enhancement events are best correlated with the chorus wave emissions outside the plasmapause. Inside the plasmasphere, intense plasmaspheric hiss can cause the net loss of relativistic electrons via persistent pitch angle scattering, regardless of whether MS waves were present or not. The intense hiss waves not only create the energy-dependent electron slot region, but also remove a lot of the outer radiation belt electrons when the expanding dayside plasmasphere frequently covers the outer zone. Since whistler-mode waves (chorus or hiss) can resonate with more electrons than MS waves, they play dominant roles in changing the outer radiation belt and the slot region. However, MS waves can accelerate the energetic electrons below 400 keV and weaken their loss inside the plasmapause. Thus, MS waves and plasmaspheric hiss generate different competing effects on energetic and relativistic electrons in the high-density plasmasphere.

Li, L; Yu, J.; Cao, J.; Yang, J; Li, X.; Baker, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023634

magnetosonic waves; Plasmapause movement; Spatial variation of outer radiaton belt; Spatial variation of slot region; Temporal-spatial variations of chorus waves; Temporal-spatial variations of plasmaspheric hiss; Van Allen Probes

Roles of whistler-mode waves and magnetosonic waves in changing the outer radiation belt and the slot region

Using the Van Allen Probe long-term (2013 \textendash 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the relativistic electron enhancement events are best correlated with the chorus wave emissions outside the plasmapause. Inside the plasmasphere, intense plasmaspheric hiss can cause the net loss of relativistic electrons via persistent pitch angle scattering, regardless of whether MS waves were present or not. The intense hiss waves not only create the energy-dependent electron slot region, but also remove a lot of the outer radiation belt electrons when the expanding dayside plasmasphere frequently covers the outer zone. Since whistler-mode waves (chorus or hiss) can resonate with more electrons than MS waves, they play dominant roles in changing the outer radiation belt and the slot region. However, MS waves can accelerate the energetic electrons below 400 keV and weaken their loss inside the plasmapause. Thus, MS waves and plasmaspheric hiss generate different competing effects on energetic and relativistic electrons in the high-density plasmasphere.

Li, L; Yu, J.; Cao, J.; Yang, J; Li, X.; Baker, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023634

magnetosonic waves; Plasmapause movement; Spatial variation of outer radiaton belt; Spatial variation of slot region; Temporal-spatial variations of chorus waves; Temporal-spatial variations of plasmaspheric hiss; Van Allen Probes

Variations of the relativistic electron flux after a magnetospheric compression event

On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor (PRM) of the fourth of the China-Brazil Earth Resource Satellites (CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on January 26 but after a small magnetic storm on February 2. The loss and recovery of the relativistic electrons during this event are investigated using the PRM data, medium- and high-energy electron observations of NOAA-15 and the Van Allen Probes, medium-energy electron observations of GOES-13, and wave observations of the Van Allen Probes. This study shows that the loss of energetic electrons in this event is related to magnetospheric compression. The chorus waves accelerate the medium-energy electrons, which causes the recovery of relativistic electrons. The Van Allen Probes detected strong chorus waves in the region L = 3\textendash6 from January 21 to February 2. However, the flux of medium-energy electrons was low in the region. This implies that the long-lasting lack of recovery of the relativistic electrons after this event is due to the lack of the medium-energy \textquotedblleftseed\textquotedblright electrons. The medium-energy electrons in the outer radiation belt may be a clue to predict the recovery of relativistic electrons.

Chen, Zhe; Chen, HongFei; Li, YiFan; Xiang, HongWen; Yu, XiangQian; Shi, WeiHong; Hao, ZhiHua; Zou, Hong; Zou, JiQing; Zhong, WeiYing;

Published by: Science China Technological Sciences      Published on: 04/2017

YEAR: 2017     DOI: 10.1007/s11431-016-9008-3

outer radiation belt high-energy electrons medium-energy electrons space environment; Van Allen Probes

Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes

We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability to consider the superposition of waves where the wave-parameters are closely spaced, 4) the ability to directly calculate the expectation value of wave parameters without resorting to ensemble averages, 5) the ability to calculate error bars on model parameters. We examine one rising-tone chorus element in detail from a disturbed time on November 14, 2012 using burst mode waveform data of the three components of the electric and magnetic field from the EMFISIS instrument on board NASA\textquoterights Van Allen Probes. The results demonstrate that sub-elements are likely composed of almost linear waves that are nearly parallel propagating with continuously changing wave parameters such as frequency and wave-vector. Between sub-elements the wave parameters of the dominant mode undergoes a discrete change in frequency and wave-vector. Near the boundary of sub-elements multiple waves are observed such that the evolution of the waves is reminiscent of wave-wave processes such as parametric decay or nonlinear induced scattering by particles. These nonlinear processes may affect the saturation of the whistler-mode chorus instability.

Crabtree, Chris; Tejero, Erik; Ganguli, Gurudas; Hospodarsky, George; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023547

Bayesian Spectral; Chorus; Van Allen Probes; whistler

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency, relativistic effects should be considered in the formula for whistler mode wave growth rate. Here we report high-resolution observations during the 14 October 2014 small storm and firstly demonstrate, using a fully relativistic simulation, that electrons with the high-energy tail population and relativistic pitch angle anisotropy can provide free energy sufficient for generating chorus below 0.1 fce. The simulated wave growth displays a very similar pattern to the observations. The current results can be applied to Jupiter, Saturn, and other magnetized planets.

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

Ion acceleration at dipolarization fronts in the inner magnetosphere

During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds of keV. Plasma pressure is the source of global storm time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts in the magnetotail. Because of significant differences between the ambient magnetic field and the dipolarization front properties in the magnetotail and the inner magnetosphere, the physical mechanisms of ion acceleration at dipolarization fronts in these two regions may also be different. In this paper we discuss a new acceleration mechanism enabled by stable trapping of ions at the azimuthally localized dipolarization fronts. It is shown that trapping can provide a robust mechanism of ion energization in the inner magnetosphere even in the absence of large electric fields.

Ukhorskiy, A; Sitnov, M.; Merkin, V.; Gkioulidou, M.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023304

injections; ring current; trapping; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13\textendash14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13\textendash14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas

Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the resonant beam of electrons. We analyze a single wave case and demonstrate that the instability occurs due to a Krein collision, which manifests as a coupling between a negative and positive energy mode. This analysis revealed that the nonlinear evolution of the spectrally stable fixed-points of the self-consistent Hamiltonian develop a sub-packet structure similar to that of space observations. We then analyze the case of two whistler waves to show that the model reproduces the nonlinear harmonic generation and leads to a hypothesis for the closely spaced frequency hopping observed in laboratory experiments and space data.

Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik;

Published by: Physics of Plasmas      Published on: 03/2017

YEAR: 2017     DOI: 10.1063/1.4977539

Dispersion relations; Electron beams; SingingEigenvalues; Van Allen Probes; Whistler waves



  3      4      5      6      7      8