Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 136 entries in the Bibliography.


Showing entries from 51 through 100


2019

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

2018

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly-generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere

Electromagnetic whistler-mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave-particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum-frequency and difference-frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly-generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH waves by hot electron instabilities, the nonlinear wave-wave interactions could additionally redistribute energy among the resonant waves, potentially affecting to some extent the magnetospheric electron dynamics.

Gao, Zhonglei; Su, Zhenpeng; Xiao, Fuliang; Summers, Danny; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wei, Fengsi; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080635

aurora; Chorus wave; electron cyclotron harmonic wave; nonlinear wave-wave interaction; Radiation belt; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Fine structure of whistler-mode hiss in plasmaspheric plumes observed by the Van Allen Probes

We survey 3 years (2013-2015) of data from the Van Allen Probes related to plasmaspheric plume crossing events. We detect 194 plume crossing events, and we find that 97\% of the plumes are accompanied by VLF hiss emissions. The plumes are mainly detected on the duskside or dayside. Careful examination of the hiss spectra reveals that all hiss emissions consist of obvious fine structure. Application of a band pass filter reveals that the fine structure is consistent with the occurrence of discrete wave packets. The hiss data display high coherency. The events are classified by location. Dusk side hiss and night side hiss tend to have extremely high polarization with no chorus at the high-frequency end of the dynamic spectrum. The dusk side hiss has a distinct upper frequency limit. On the other hand, the dawn side hiss has strong chorus elements at the upper hiss frequency which makes the upper frequency limit ambiguous. We show that the structure of whistler-mode hiss is different from artificial random noise. Although noise also has fine spectral characteristics, the polarization and waveform data are totally different from the hiss cases. Our results strongly suggest that whistle-mode hiss in plasmaspheric plumes universally possesses fine structure.

Nakamura, S.; Omura, Y.; Summers, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025803

fine structure; hiss; nonlinear; plasmaspheric plume; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Generation of lower L -shell dayside chorus by energetic electrons from the plasmasheet

Currently, the generation mechanism for the lower L-shell dayside chorus has still remained an open question. Here, we report two storm events: 06-07 March 2016 and 20-21 January 2016, when Van Allen Probes observed enhanced dayside chorus with lower and higher wave normal angles (the angles between the wave vector and the geomagnetic field) in the region of L = 3.5-6.3 and MLT = 5.6-13.5. Hot and energetic (\~ 1-100 keV) electrons displayed enhancements in fluxes and anisotropy when they were injected from the plasmasheet and drifted from midnight through dawn toward the dayside. Calculations of chorus local growth rates under different waves normal angles show that the upper cutoff and peak wave frequencies display similar patterns to the observations. Chorus growth rates maximize for the parallel propagation and drop with increasing wave normal angles. The current results confirm that the observed lower L-shell dayside chorus can be excited by anisotropic electrons originating from the plasmasheet in drifting from the nightside to the dayside.

He, Yihua; Xiao, Fuliang; Su, Zhenpeng; Zheng, Huinan; Yang, Chang; Liu, Si; Zhou, Qinghua;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2017JA024889

Dayside chorus generation; Radiation belt; Van Allen Probes; Wave-particle interaction

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is \~20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 h and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1\textendash8.3. The mass density (in amu cm-3) is higher than the electron density (in cm-3) by a factor of \~6, which implies that 17\textendash33\% of the ions were O+.

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is \~20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 h and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1\textendash8.3. The mass density (in amu cm-3) is higher than the electron density (in cm-3) by a factor of \~6, which implies that 17\textendash33\% of the ions were O+.

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts

Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency-time structures during the propagation. On the basis of Van Allen Probes observations, we here present the first report of magnetosonic harmonic falling and rising frequency emissions. They lasted for up to 2 h and occurred primarily in the dayside plasmatrough following intense substorms. These harmonic emission lines were well spaced by the proton gyrofrequency but exhibited a clear falling (rising) frequency characteristic in a regime with the temporal increase (decrease) of the proton gyrofrequency harmonics. Such unexpected structures might be produced by the nonlinear interactions between the locally generated magnetosonic waves at the proton gyrofrequency harmonics and a constant frequency magnetosonic wave propagating away from the Earth.

Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL079232

Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; rising/falling frequency; Van Allen Probes; wave propagation

Rapid Enhancements of the Seed Populations in the Heart of the Earth\textquoterights Outer Radiation Belt: A Multicase Study

To better understand rapid enhancements of the seed populations (hundreds of keV electrons) in the heart of the Earth\textquoterights outer radiation belt (L* ~ 3.5\textendash5.0) during different geomagnetic activities, we investigate three enhancement events measured by Van Allen Probes in detail. Observations of the fluxes and the pitch angle distributions of energetic electrons are analyzed to determine rapid enhancements of the seed populations. Our study shows that three specified processes associated with substorm electron injections can lead to rapid enhancements of the seed populations, and the electron energy increases up to 342 keV. In the first process, substorm electron injections accompanied by the transient and intense substorm electric fields can directly lead to rapid enhancements of the seed populations in the heart of the outer radiation belt. In the second process, the substorm injected electrons are first trapped in the outer radiation belt and subsequently transported into L* < 4.5 by the convection electric field. In the third process, the lower energy electrons are first injected at L* ~ 5.3 and then undergo drift resonance with ultralow-frequency waves. These accelerated electrons by ultralow-frequency waves are further transported into L* < 4.5 due to the convection electric field. This process is consistent with the radial diffusion. Our results suggest that these specified processes are important for understanding the dynamics of the seed populations in the heart of the outer radiation belt.

Tang, C.; Xie, X.; Ni, B.; Su, Z.; Reeves, G.; Zhang, J.-C.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.; Wygant, J.; Dai, G;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2017JA025142

enhanced convection; Substorm Injections; the outer radiation belt; the seed population; ULF waves; Van Allen Probes

Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter ~10\textendash100 keV electrons at rates up to ~10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes

Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift-bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30\textdegree or 150\textdegree, and 170\textendash180 keV for α = 50\textdegree or 130\textdegree. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbound legs of the orbit. We find the gradient to be outward on both legs, which means that energy is transferred from the protons to the wave. During the poloidal Pc4 wave event, the Dst* index shows a measurable increase of ~6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and from the variation of proton flux by the drift-bounce resonance. We suggest that energy transfer from the ring current protons to the poloidal Pc4 wave via the drift-bounce resonance contributes to up to ~85 \% of the increase of the Dst* index.

Oimatsu, S.; e, M.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; Smith, C.; MacDowall, R.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA025087

Van Allen Probes

Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes

Su, Zhenpeng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017GL076754

electron instability; ELF hiss; generation mechanism; pitch angle scattering; precipitation loss; Radiation belt; Van Allen Probes

Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017GL076382

magnetosonic waves; Radiation belt; ring current; solar wind dynamic pressure; Van Allen Probes; Wave-particle interaction

Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfv\ en Waves

Long-lasting second-harmonic poloidal standing Alfv\ en waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (\~10 mHz) were also observed in the energy (W) range 50\textendash300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of \~-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180\textdegree (southward moving protons) at W \~ 120 keV. This feature is explained by drift-bounce resonance (mωd \~ ωb) of \~120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density ( math formula) exhibits a bump-on-tail structure with math formula occurring in the 1\textendash10 keV energy range. This math formula is unstable and can excite P2 waves through bounce resonance (ω \~ ωb), where ω is the wave frequency.

Takahashi, Kazue; Oimatsu, Satoshi; e, Masahito; Min, Kyungguk; Claudepierre, Seth; Chan, Anthony; Wygant, John; Kim, Hyomin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024869

bounce and drift-bounce resonances; energetic protons; plasmasphere; poloidal ULF waves; second harmonic; Van Allen Probes

2017

Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm

There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measured time scale of the electron increase is inferred to be consistent with this nonlinear theory.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024540

chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes

Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS and POES satellites

Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its dominant generation mechanism. In the pre-shock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainly originated from the dayside chorus waves. On arrival of the shock, the removal of pre-existing dayside chorus and the insignificant variation of low-frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of pre-noon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Reeves, G.; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024470

Chorus; interplanetary shock; Plasmaspheric Hiss; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction

Energetic proton spectra measured by the Van Allen Probes

We test the hypothesis that pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during March 17-20, 2013 and March 17-20, 2015, we measure proton energy spectra in the region 3 <= L <= 6 using the RBSPICE B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

Summers, Danny; Shi, Run; Engebretson, Mark; Oksavik, Kjellmar; Manweiler, Jerry; Mitchell, Donald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024484

EMIC-wave -proton scattering; proton ring current; Van Allen Probes

Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances

Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show that low-frequency hiss induced bounce-resonant scattering of electrons has a strong dependence on equatorial pitch-angle αeq. For electrons with αeq close to 90\textdegree, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 hour. Cyclotron- and Landau-resonant interactions between low-frequency hiss and electrons are also investigated for comparisons. It is found that while the bounce and Landau resonances are responsible for the diffusive transport of near-equatorially mirroring electrons to lower αeq, pitch-angle scattering by cyclotron resonance could take over to further diffuse electrons into the atmosphere. Bounce resonance provides a more efficient pitch-angle scattering mechanism of relativistic (>= 1 MeV) electrons than Landau resonance due to the stronger scattering rates and broader resonance coverage of αeq, thereby demonstrating that bounce resonance scattering by low-frequency hiss can contribute importantly to the evolution of the electron pitch-angle distribution and the loss of radiation belt electrons.

Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun;

Published by: Geophysical Research Letters      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017GL075104

bounce resonance; Low-frequency hiss; Radiation Belt Dynamics; Van Allen Probes; wave-particle interactions

Rapid loss of radiation belt relativistic electrons by EMIC waves

How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth\textquoterights outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here, on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the EMIC wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L-shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L-shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region was able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.

Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024169

electron loss; EMIC waves; pitch angle scattering; radial diffusion; Radiation belts; Van Allen Probes; Wave-particle interaction

Direct observation of generation and propagation of magnetosonic waves following substorm injection

Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernstein mode instability. In the frequency-time spectrograms, these emission lines exhibited a clear rising tone characteristic with a long duration of 15-25 mins, implying the additional contribution of other undiscovered mechanisms. Nearly at the same time, the magnetosonic waves arose at lower L-shells without substorm injections. The wave signals at two different locations, separated by ΔL up to 2.0 and by ΔMLT up to 4.2, displayed the consistent frequency-time structures, strongly supporting the hypothesis about the radial and azimuthal propagation of magnetosonic waves.

Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2017     DOI: 10.1002/2017GL074362

Bernstein mode instability; magnetosonic waves; Radiation belt; rising tone; substorm injection; Van Allen Probes; Wave-particle interaction

Statistical study of the storm-time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms

CME- or CIR-driven storms can change the electron distributions in the radiation belt dramatically, which can in turn affect the spacecraft in this region or induce geomagnetic effects. The Van Allen Probes twin spacecraft, launched on 30 August 2012, orbit near the equatorial plane and across a wide range of L* with apogee at 5.8 RE and perigee at 620 km. Electron data from Van Allen Probes MagEIS and REPT instruments have been binned every six hours at L*=3 (defined as 2.5

Shen, Xiao-Chen; Hudson, Mary; Jaynes, Allison; Shi, Quanqi; Tian, Anmin; Claudepierre, Seth; Qin, Mu-Rong; Zong, Qiu-Gang; Sun, Wei-Jie;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017JA024100

CIR-driven storm; CME-driven storm; outer radiation belt; Van Allen Probes

Unusual refilling of the slot region between the Van Allen radiation belts from November 2004 to January 2005

Using multisatellite measurements, a uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is investigated. This event occurred under remarkable interplanetary and magnetospheric conditions. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by chorus could account for the major feature of observed enhancement outside the plasmapause. When the plasmasphere recovered, the refilled slot region was enveloped inside the plasmapause. In the plasmasphere, while the efficiency of hiss scattering loss increases by including unusually low frequency hiss waves, the interaction with hiss alone cannot fully explain the decay of this event, especially at higher energies, which suggests that electromagnetic ion cyclotron waves contribute to the relativistic electron loss process at such low L shells for this refilling event. Through a comprehensive analysis on the basis of data analyses and numerical calculations, the present study sheds light on the underlying physics responsible for the unusual slot refilling by relativistic electrons, which exhibits the complexity of both radiation belt electron dynamics and associated wave-particle interactions.

Yang, Xiaochao; Ni, Binbin; Yu, Jiang; Zhang, Yang; Zhang, Xiaoxin; Sun, Yueqiang;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2016JA023204

Radiation belt; Relativistic electron; Slot region; Van Allen Probes

Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones

Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to \~1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT \~9\textendash14) midlatitude (|MLAT|>15\textdegree) region. An oscillating tone can behave either regularly or irregularly and can even transform into a nearly constant tone (with a relatively narrow frequency sweep range). We suggest that these highly coherent oscillating tones were generated naturally rather than being related to some artificial VLF transmitters. Possible scenarios for the generation of the oscillating tone chorus are as follows: (1) being nonlinearly triggered by the accompanying hiss-like bands or (2) being caused by the modulation of the wave source. The details of the generation and evolution of such a long-lived oscillating tone chorus need to be investigated both theoretically and experimentally in the future.

Gao, Zhonglei; Su, Zhenpeng; Chen, Lunjin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 06/2017

YEAR: 2017     DOI: 10.1002/2017GL073420

Chorus; falling tone; nonlinear generation; oscillating tone; rising tone; Van Allen Probes

Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study

Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of \textquotedblleftlarge flux enhancement\textquotedblright and \textquotedblleftsmall flux enhancement.\textquotedblright For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons (592 keV, 1 MeV, 1.8 MeV, and 2.1 MeV) during the storm recovery phase decrease with electron kinetic energy, being 0.92, 0.68, 0.49, and 0.39, respectively. The correlation coefficients between the peak flux of the seed population and those of relativistic electrons are 0.92, 0.81, 0.75, and 0.73. For small flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons are relatively smaller, while the peak flux of the seed population is well correlated with those of relativistic electrons (correlation coefficients >0.84). It is suggested that during geomagnetic storms there is a good correlation between the seed population and <=1 MeV electrons and the seed population is important to the relativistic electron dynamics.

Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA023905

relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes

Generation of extremely low frequency chorus in Van Allen radiation belts

Recent studies have shown that chorus can efficiently accelerate the outer radiation belt electrons to relativistic energies. Chorus, previously often observed above 0.1 equatorial electron gyrofrequency fce, was generated by energetic electrons originating from Earth\textquoterights plasma sheet. Chorus below 0.1 fce has seldom been reported until the recent data from Van Allen Probes, but its origin has not been revealed so far. Because electron resonant energy can approach the relativistic level at extremely low frequency, relativistic effects should be considered in the formula for whistler mode wave growth rate. Here we report high-resolution observations during the 14 October 2014 small storm and firstly demonstrate, using a fully relativistic simulation, that electrons with the high-energy tail population and relativistic pitch angle anisotropy can provide free energy sufficient for generating chorus below 0.1 fce. The simulated wave growth displays a very similar pattern to the observations. The current results can be applied to Jupiter, Saturn, and other magnetized planets.

Xiao, Fuliang; Liu, Si; Tao, Xin; Su, Zhenpeng; Zhou, Qinghua; Yang, Chang; He, Zhaoguo; He, Yihua; Gao, Zhonglei; Baker, D.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023561

ELF chorus waves; RBSP results; relativistic distribution; Van Allen Probes; Wave-particle interaction

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches \~ 35\textendash95 pT in the case of distinct butterfly distributions with BI > 1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80\%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure

Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappearances of plasmaspheric hiss and then exohiss.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016GL071987

Chorus; Exohiss; Plasmaspheric Hiss; Van Allen Probes; wave disappearance; wave generation

2016

Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts

Auroral kilometric radiation (AKR) is a strong terrestrial radio emission and dominates at higher latitudes because of reflection in vicinities of the source cavity and plasmapause. Recently, Van Allen Probes have observed occurrences of AKR emission in the equatorial region of Earth\textquoterights radiation belts but its origin still remains an open question. Equatorial AKR can produce efficient acceleration of radiation belt electrons and is a risk to space weather. Here we report high-resolution observations during two small storm periods 4\textendash6 April and 18\textendash20 May 2013 and show, using a 3-D ray tracing simulation, that AKR can propagate downward all the way into the equatorial plane in the radiation belts under appropriate conditions. The simulated results can successfully explain the observed AKR\textquoterights spatial distribution and frequency range, and the current results have a wide application to all other magnetized astrophysical objects in the universe.

Xiao, Fuliang; Zhou, Qinghua; Su, Zhenpeng; He, Zhaoguo; Yang, Chang; Liu, Si; He, Yihua; Gao, Zhonglei;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071728

AKR emissions; Geomagnetic storms; Radiation belts; ray tracing simulations; satellite data; Van Allen Probes

Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss

We test the recently developed nonlinear wave growth theory of plasmaspheric hiss against discrete rising tone elements of hiss emissions observed by the Van Allen Probes. From the phase variation of the waveforms processed by bandpass filters, we calculate the instantaneous frequencies and wave amplitudes. We obtain the theoretical relation between the wave amplitude and frequency sweep rates at the observation point by applying the convective growth rates and dispersion factors to the known relation at the equator. By plotting the theoretical relation over scatterplots of the wave amplitudes and the frequency sweep rates for rising tone elements, we find good agreement between the hiss observations and the nonlinear theory. We also find that the duration periods of the hiss elements are in good agreement with the nonlinear transition time necessary for the formation of a resonant current through coherent nonlinear wave-particle interactions.

Nakamura, Satoko; Omura, Yoshiharu; Summers, Danny; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070333

magnetospheric dynamics; nonlinear wave growth theory; plasma wave; Plasmaspheric Hiss; Van Allen Probes; whistler-mode chorus

Control of the innermost electron radiation belt by large-scale electric fields

Electron measurements from the Magnetic Electron Ion Spectrometer instruments on Van Allen Probes, for kinetic energies \~100 to 400 keV, show characteristic dynamical features of the innermost ( inline image) radiation belt: rapid injections, slow decay, and structured energy spectra. There are also periods of steady or slowly increasing intensity and of fast decay following injections. Local time asymmetry, with higher intensity near dawn, is interpreted as evidence for drift shell distortion by a convection electric field of magnitude \~0.4 mV/m during geomagnetically quiet times. Fast fluctuations in the electric field, on the drift time scale, cause inward diffusion. Assuming that they are proportional to changes in Kp, the resulting diffusion coefficient is sufficient to replenish trapped electrons lost by atmospheric scattering. Major electric field increases cause injections by inward electron transport. An injection associated with the June 2015 magnetic storm is consistent with an enhanced field magnitude \~5 mV/m. Subsequent drift echoes cause spectral structure.

Selesnick, R.; Su, Y.-J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022973

electric field; electrons; Inner radiation belt; Van Allen Probes

Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

Formation of the inner electron radiation belt by enhanced large-scale electric fields

A two-dimensional bounce-averaged test particle code was developed to examine trapped electron trajectories during geomagnetic storms with the assumption of conservation of the first and second adiabatic invariants. The March 2013 storm was selected as an example because the geomagnetic activity Kp index sharply increased from 2 + to 7- at 6:00 UT on 17 March. Electron measurements with energies between 37 and 460 keV from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard Van Allen Probes (VAP) are used as initial conditions prior to the storm onset and served to validate test particle simulations during the storm. Simulation results help to interpret the observed electron injection as nondiffusive radial transport over a short distance in the inner belt and slot region based on various electric field models, although the quantitative comparisons are not precise. We show that electron drift trajectories are sensitive to the selection of electric field models. Moreover, our simulation results suggest that the actual field strength of penetration electric fields during this storm is stronger than any existing electric field model, particularly for L <= 2.

Su, Yi-Jiun; Selesnick, Richard; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022881

DC electric fields; electron injections; Inner radiation belt; test particle simulation; Van Allen Probes; Van Allen Probes electron measurements

Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013

Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (\~500 keV to several MeV) and equatorial pitch angles (0\textdegree<=αe<=180\textdegree). STEERB simulations show that the relativistic electron loss in the region L = 4.5\textendash6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of wave-driven precipitation loss even during nonstorm times.

Su, Zhenpeng; Gao, Zhonglei; Zhu, Hui; Li, Wen; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022546

EMIC; numerical modeling; Plasmaspheric Hiss; precipitation loss; radiation belt dropout; Van Allen Probes; Wave-particle interaction

A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

A statistical study of ring current-energy proton pitch angle distributions (PADs) in Earth\textquoterights inner magnetosphere is reported here. The data are from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probe B spacecraft from January 1, 2013 to April 15, 2015. By fitting the data to the functional form sinnα, where α is the proton pitch angle, we examine proton PADs at the energies 50, 100, 180, 328 and 488 keV in the L-shell range from L = 2.5 to L = 6. Three PAD types are classified: trapped (90\textdegree peaked), butterfly and isotropic. The proton PAD dependence on the particle energy, MLT, L-shell, and geomagnetic activity are analyzed in detail. The results show a strong dependence of the proton PADs on MLT. On the nightside, the n values outside the plasmapause are clearly lower than those inside the plasmapause. At higher energies and during intense magnetic activity, nightside butterfly PADs can be observed at L-shells down to the vicinity of the plasmapause. The averaged n values on the dayside are larger than on the nightside. A maximum of the averagedn values occurs around L = 4.5 in the postnoon sector (12 - 16MLT). The averaged n values show a dawn-dusk asymmetry with lower values on the dawnside at high L-shells, which is consistent with previous studies of butterfly PADs. The MLT dependence of the proton PADs becomes more distinct with increasing particle energy. These features suggest that drift-shell splitting coupled with a radial flux gradient play an important role in the formation of PADs, particularly at L > ~ 4.5

Shi, Run; Summers, Danny; Ni, Binbin; Manweiler, Jerry; Mitchell, Donald; Lanzerotti, Louis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022140

proton pitch angle distributions; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data

Energetic electron observations in Earth\textquoterights radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts \textendash one that removes any spectral assumptions from the CXD flux calculation, and one that compares the energy spectra \textendash we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra we use a combination of four distributions that, together, capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron-Proton Telescope (REPT) on Van Allen Probes as a \textquotedblleftgold standard\textquotedblright we demonstrate that the CXD instruments are well-understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 \textquotedblleftSt. Patrick\textquoterights Day\textquotedblright geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation, and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

Morley, Steven; Sullivan, John; Henderson, Michael; Blake, Bernard; Baker, Daniel;

Published by: Space Weather      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015SW001339

Global Positioning System; Van Allen Probes

Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons

Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1\textendash0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (\~0.1 MeV) electrons, different from the normal chorus. For high-energy (>=0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to that of the normal chorus, but much stronger (up to 2 orders of magnitude) pitch-angle diffusion near the loss cone.

Gao, Zhonglei; Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2016GL067687

Cyclotron resonance; Hiss-like band; Low-frequency chorus; Radiation belt; Van Allen Probes; Rising tones; Van Allen Probes

Pulsating proton aurora caused by rising tone Pc1 waves

We found rising tone emissions with a dispersion of \~1 Hz per several tens of seconds in the dynamic spectrum of a Pc1 geomagnetic pulsation (Pc1) observed on the ground. These Pc1 rising tones were successively observed over \~30 min from 0250 UT on 14 October 2006 by an induction magnetometer at Athabasca, Canada (54.7\textdegreeN, 246.7\textdegreeE, magnetic latitude 61.7\textdegreeN). Simultaneously, a Time History of Events and Macroscale Interactions during Substorms panchromatic (THEMIS) all-sky camera detected pulsations of an isolated proton aurora with a period of several tens of seconds, \~10\% variations in intensity, and fine structures of 3\textdegree in magnetic longitudes. The pulsations of the proton aurora close to the zenith of ATH have one-to-one correspondences with the Pc1 rising tones. This suggests that these rising tones scatter magnetospheric protons intermittently at the equatorial region. The radial motion of the magnetospheric source, of which the isolated proton aurora is a projection, can explain the central frequency increase of Pc1, but not the shorter period (tens of seconds) frequency increase of \~1 Hz in Pc1 rising tones. We suggest that EMIC-triggered emissions generate the frequency increase of Pc1 rising tones on the ground and that they also cause the Pc1 pearl structure, which has a similar characteristic time.

Nomura, R.; Shiokawa, K.; Omura, Y.; Ebihara, Y.; Miyoshi, Y.; Sakaguchi, K.; Otsuka, Y.; Connors, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015JA021681

EMIC-triggered waves; Pc1 waves; proton aurora

Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012

In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of \~0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We further compare the measurement and the nonlinear theories, based on the inhomogeneity ratio, our own calculation derived from the field equation and the backward wave oscillator model. The wave quantities examined are frequency, amplitude, frequency drift rate, and duration. This type of study is useful to more deeply understand wave-particle interactions and hence may lead to predicting the generation and loss of radiation belt electrons in the future.

Matsui, H.; Paulson, K.; Torbert, R.; Spence, H.; Kletzing, C.; Kurth, W.; Skoug, R.; Larsen, B.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021772

chorus waves; Geomagnetic storm; nonlinearity; Van Allen Probes

Variation in crossover frequency of EMIC waves in plasmasphere estimated from ion cyclotron whistler waves observed by Van Allen Probe A

We report variations in the propagation of the H+ band ion cyclotron whistlers observed by Van Allen Probe A. Ion cyclotron whistlers are one of the EMIC (electromagnetic ion cyclotron) waves generated by mode conversion from lightning whistlers. Crossover frequency is an important frequency for the ion cyclotron whistlers, which is a function of the variations in the local heavy-ion composition. We surveyed waveform data obtained by the Electric and Magnetic Field Instrument and Integrated Science instrument and found that 3461 H+ band ion cyclotron whistlers were observed from 572 km to 5992 km in altitude. The main finding is that the crossover frequencies of the observed events decreased with increasing altitude. These results support the hypothesis that the total heavy-ion density decreases with increasing altitude. Furthermore, in 96\% of all observed events, the crossover frequencies exceeded inline image, which suggests that the EMIC dispersion relation contains a frequency gap of around inline image.

Matsuda, Shoya; Kasahara, Yoshiya; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015GL066893

EMIC wave; ion cyclotron whistler; plasmasphere; heavy ions; Van Allen Probes

2015

Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements

A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sinnα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index and L-shell. The difference in electron PADs between the inner and outer belt is distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L-shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Besides being dependent on electron energy, magnetic activity and L-shell, the results show a clear dependence on MLT, with higher n values on the dayside.

Shi, Run; Summers, Danny; Ni, Binbin; Fennell, Joseph; Blake, Bernard; Spence, Harlan; Reeves, Geoffrey;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021724

pitch angle distributions; Van Allen Probes



  1      2      3