Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1225 entries in the Bibliography.


Showing entries from 251 through 300


2019

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP-B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP-B and ground-magnetometer observations, where Pc5 pulsations are observed to drift-resonate with relativistic electrons on the duskside. Thus, Arase observed the drift-resonance signatures \textquotedblleftremotely,\textquotedblright whereas RBSP-B observed them \textquotedblleftlocally.\textquotedblright

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP-B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP-B and ground-magnetometer observations, where Pc5 pulsations are observed to drift-resonate with relativistic electrons on the duskside. Thus, Arase observed the drift-resonance signatures \textquotedblleftremotely,\textquotedblright whereas RBSP-B observed them \textquotedblleftlocally.\textquotedblright

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study

Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-dependent acceleration of ultrarelativistic electrons in the outer belt. Especially, for electrons with very high energies (~7 MeV), prevalent positive phase space density radial gradients support inward radial diffusion being responsible for electron acceleration in the center of the outer belt (L*~3\textendash5) during most enhancement events in the Van Allen Probes era. We propose a two-step acceleration process to explain the acceleration of ~7 MeV electrons in the outer belt: intense and sustained chorus waves locally energize core electron populations to ultrarelativistic energies at high L region beyond the Van Allen Probes\textquoteright apogee, followed by inward radial diffusion which further energizes these populations to even higher energies. Statistical results of chorus wave activity inferred from POES precipitating electron measurements as well as core electron populations observed by the Van Allen Probes and GOES support this hypothesis.

Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA027111

Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes

Characteristics and Generation of Low-Frequency Magnetosonic Waves Below the Proton Gyrofrequency

We report a Van Allen Probes observation of large-amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low-frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to December 2018. The spatial distribution shows that these low-frequency magnetosonic emissions are dominantly observed inside the plasmasphere from the prenoon to the midnight sector within 5\textdegree of the geomagnetic equator and typically have modest-to-strong wave amplitudes ranging from tens of pT to hundreds of pT. Our study provides insight into understanding the generation and propagation of these low-frequency magnetosonic waves in the Earth\textquoterights inner magnetosphere.

Teng, Shangchun; Li, Wen; Tao, Xin; Ma, Qianli; Shen, Xiaochen;

Published by: Geophysical Research Letters      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019GL085372

Below the proton gyrofrequency; Low frequency magnetosonic wave; Van Allen Probes; wave generation; Wave propagation characteristics

Propagation of EMIC Waves Inside the Plasmasphere: A Two-Event Study

Electromagnetic ion cyclotron (EMIC) waves are important for the loss of high-energy electrons in the radiation belt. Based on the measurements of Van Allen Probes, two events during the same storm period are presented to study the propagation of EMIC waves. In the first event, left-handed polarized EMIC waves were observed near the plasmapause, while right-handed waves were observed in the inner plasmasphere. The Poynting flux of the right-hand waves was mainly directed inward and equatorward, and no positive growth rates were obtained in the region of these right-hand waves, indicating the inward propagation of the waves from a higher L-shell. In the second event, the wave vectors were quasi-perpendicular to the background magnetic field inside the plasmaspheric plume but became quasi-parallel outside. This phenomenon can be explained by the refraction of the large density gradient, which qualitatively satisfies Snell\textquoterights law. These observations provide indirect evidence of the inward propagation of the EMIC waves and give a new insight on how density gradients may modify wave properties

Wang, G.; Zhang, T.; Gao, Z.; Wu, M; Wang, G.; Schmid, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA027055

density gradient; EMIC wave; inward propagation; refraction; right hand polarization; Snell\textquoterights law; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Efficacy of Electric Field Models in Reproducing Observed Ring Current Ion Spectra During Two Geomagnetic Storms

We use the UNH-IMEF, Weimer 1996, https://doi.org/10.1029/96GL02255 and Volland-Stern electric field models along with a dipole magnetic field to calculate drift paths for particles that reach the Van Allen Probes\textquoteright orbit for two inbound passes during two large geomagnetic storms. We compare the particle access in the models with the observed particle access using both realistic and enhanced solar wind model parameters. To test the accuracy of the drift paths, we estimate the H+ charge exchange loss along these drift paths. While increasing the strength of the model electric field drives particles further inward, improving agreement, energy-dependent cutoffs in the spectra do not agree, indicating that potential patterns for highly disturbed times are inaccurate. While none of the models were able to reproduce the observed features of the more dawnward pass during the 17 March 2013 storm, the UNH-IMEF model with enhanced inputs was able to adequately reproduce the access, charge exchange loss, and H+ particle pressure during the 17 March 2015 storm.

Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Matsui, H.; Spence, H.E.; Thaller, S.A.; Wygant, J.R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026683

Van Allen Probes

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave-particle interactions also contribute to drive butterfly PADs at L ≳ 1.9. Our study provides a feasible mechanism to explain the electron flux enhancement in the inner belt and the persistent presence of the butterfly PADs at L~1.5.

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

Published by: Geophysical Research Letters      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave-particle interactions also contribute to drive butterfly PADs at L ≳ 1.9. Our study provides a feasible mechanism to explain the electron flux enhancement in the inner belt and the persistent presence of the butterfly PADs at L~1.5.

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

Published by: Geophysical Research Letters      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere

Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L-shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varies with L-shell, extending up to 12 kHz for L lower than 3. The effect is stronger in the afternoon, evening, and night sectors, consistent with more lightning and easier wave propagation through the ionosphere.

ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083918

DEMETER; Lightning; Van Allen Probes; whistler mode; WWLLN

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes

We present a statistical analysis with 100\% duty cycle and non-time-averaged amplitudes of the prevalence and distribution of high-amplitude >50-pT whistler mode waves in the outer radiation belt using 5 years of Van Allen Probes data. Whistler mode waves with high magnetic field amplitudes are most common above L=4.5 and between magnetic local time of 0\textendash14 where they are present approximately 1\textendash6\% of the time. During high geomagnetic activity, high-amplitude whistler mode wave occurrence rises above 25\% in some regions. The dayside population are more common during quiet or moderate geomagnetic activity and occur primarily >5\textdegree from the magnetic equator, while the night-to-dawn population are enhanced during active times and are primarily within 5\textdegree of the magnetic equator. These results are different from the distribution of electric field peaks discussed in our previous paper covering the same time period and spatial range. Our previous study found large-amplitude electric field peaks were common down to L=3.5 and were largely absent from afternoon and near noon. The different distribution of large electric and magnetic field amplitudes implies that the low-L component of whistler mode waves observed previously are primarily highly oblique, while the dayside and high-L populations are primarily field aligned. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact nonlinearly with electrons, resulting in rapid energization, de-energization, or pitch angle scattering. This also may provide clues regarding the mechanisms which can cause significant whistler mode wave growth up to more than 100 times the average wave amplitude.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026913

Magnetosphere; magnetospheric chorus; Radiation belts; Van Allen Probes; whistler wave

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth\textquoterights Inner Magnetosphere

Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen- and helium-band EMIC waves, respectively. Moreover, we found that magnetosonic waves can cause the resonant heating of thermal protons. Our study indicates the importance of energy transfer from the EMIC and magnetosonic waves to ions with different species at thermal energies.

Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083513

electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation

Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates

A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi-linear diffusion as commonly assumed. We discuss the possible consequences of such a large amount of high-amplitude chorus waves and examine their characteristics that can influence the efficiency of nonlinear wave-particle interactions.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083833

chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size

Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates

A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi-linear diffusion as commonly assumed. We discuss the possible consequences of such a large amount of high-amplitude chorus waves and examine their characteristics that can influence the efficiency of nonlinear wave-particle interactions.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083833

chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size

Conjugate Ionosphere-Magnetosphere Observations of a Sub-Alfv\ enic Compressional Intermediate- m Wave: A Case Study Using EKB Radar and Van Allen Probes

A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field-aligned magnetic component was approximately 2 times larger than both transverse components and accompanied by antiphase pressure oscillations; that is, the wave is compressional and diamagnetic. According to both radar and spacecraft measurements, among two transverse magnetic components, the dominant one was the poloidal. The wave was possibly driven by substorm-injected energetic protons registered by the spacecraft: the proton fluxes were modulated with the wave frequency at energies of about 90 keV, which corresponded to the energy of the drift wave-particle resonance. The wave frequency was much lower than the minimal frequency of the field line resonance calculated using the spacecraft data. We conclude that the wave is not the Alfv\ en mode, but some kind of compressional wave, for example, the drift-compressional mode.

Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026541

compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes

Conjugate Ionosphere-Magnetosphere Observations of a Sub-Alfv\ enic Compressional Intermediate- m Wave: A Case Study Using EKB Radar and Van Allen Probes

A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field-aligned magnetic component was approximately 2 times larger than both transverse components and accompanied by antiphase pressure oscillations; that is, the wave is compressional and diamagnetic. According to both radar and spacecraft measurements, among two transverse magnetic components, the dominant one was the poloidal. The wave was possibly driven by substorm-injected energetic protons registered by the spacecraft: the proton fluxes were modulated with the wave frequency at energies of about 90 keV, which corresponded to the energy of the drift wave-particle resonance. The wave frequency was much lower than the minimal frequency of the field line resonance calculated using the spacecraft data. We conclude that the wave is not the Alfv\ en mode, but some kind of compressional wave, for example, the drift-compressional mode.

Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026541

compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes

Conjugate Ionosphere-Magnetosphere Observations of a Sub-Alfv\ enic Compressional Intermediate- m Wave: A Case Study Using EKB Radar and Van Allen Probes

A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field-aligned magnetic component was approximately 2 times larger than both transverse components and accompanied by antiphase pressure oscillations; that is, the wave is compressional and diamagnetic. According to both radar and spacecraft measurements, among two transverse magnetic components, the dominant one was the poloidal. The wave was possibly driven by substorm-injected energetic protons registered by the spacecraft: the proton fluxes were modulated with the wave frequency at energies of about 90 keV, which corresponded to the energy of the drift wave-particle resonance. The wave frequency was much lower than the minimal frequency of the field line resonance calculated using the spacecraft data. We conclude that the wave is not the Alfv\ en mode, but some kind of compressional wave, for example, the drift-compressional mode.

Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026541

compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes

Diffuse Auroral Electron and Ion Precipitation Effects on RCM-E Comparisons with Satellite Data During the March 17, 2013 Storm

Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self-consistent Rice Convection Model Equilibrium (RCM-E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnight where the partial ring current field has perturbed the magnetic field. The precipitating protons likewise contribute sporadically to the storm time Hall and Pedersen conductance in localized regions whereas the precipitating electrons are the dominate storm time contributor to enhanced Hall and Pedersen conductance at auroral magnetic latitudes on the night and morning side. The RCM-E model can reproduce general features of the Van Allen Probe/MagEIS observed trapped electron differential flux spectrograms over energies of ~37 to 150 keV. The simulations with a parameterized electron loss model also reproduce reasonably well the storm time Defense Meteorological Satellite Program integrated electron energy flux at 850 km at satellite crossings from predawn to midmorning. However, model-data agreement is not as good from dusk to premidnight where there are large uncertainties in the electron loss model.

Chen, Margaret; Lemon, Colby; Hecht, James; Sazykin, Stanislav; Wolf, Richard; Boyd, Alexander; Valek, Philip;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026545

diffuse aurora; electron and ion precipitation; field-line curvature scattering; inner magnetospheric electric field; ionospheric conductance; simulations and data comparisons; Van Allen Probes

Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region

In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground-based data in order to derive the lower-energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi.org/10.1029/2010JA016280) serves as the basis for our inversion method, assuming that the triggering wave is originated by the linear cyclotron instability. We present 16 consecutive rising-tone emissions recorded in the generation region between 11 and 12 UT on 14 November 2012. The results of the inversion are compared with density and thermal velocities (parallel and perpendicular) of energetic electrons derived from the unidirectional flux data of the Helium, Oxygen, Proton, and Electron instrument, showing a good agreement: The normalized root-mean-square deviation between the measured and predicted values are less than \~15\%. We found that the theoretical amplitudes are consistent with the measured ones. The relation between linear and nonlinear wave growth agrees with our basic assumption; namely, linear growth is a preceding process of nonlinear wave growth. We analyze electron distributions at the relativistic resonant energy ranges.

asz, Lilla; Omura, Yoshiharu; Lichtenberger, J\; Friedel, Reinhard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026337

chorus inversion; Van Allen Probes; Wave-particle interaction

Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >

During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low-latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the Balloon Array for RBSP Relativistic Electron Losses balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe A satellite (at postmidnight local time) showed clear butterfly distributions, and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar-orbiting Operational Environmental Satellite satellites, though tended to be confined to the dawn-dusk meridians.

Lessard, Marc; Paulson, Kristoff; Spence, Harlan; Weaver, Carol; Engebretson, Mark; Millan, Robyn; Woodger, Leslie; Halford, Alexa; Horne, Richard; Rodger, Craig; Hendry, Aaron;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026477

Van Allen Probes

Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015

In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4\textendash3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magnetic local time can be favorable for the loss of relativistic electrons at higher pitch angles. An illustrative calculation that combines the nominal pitch angle scattering rate due to whistler mode chorus at high pitch angles with the H+ band EMIC wave loss rate at low pitch angles produces loss on time scale observed at L=2.4\textendash3.2. At high L values and lower energies, radial loss to the magnetopause is a viable explanation.

Qin, Murong; Hudson, Mary; Li, Zhao; Millan, Robyn; Shen, Xiaochen; Shprits, Yuri; Woodger, Leslie; Jaynes, Allison; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA025726

cold ion composition; EMIC wave; minimum resonant energy; pitch angle diffusion; quasi-linear theory; relativistic electron loss; Van Allen Probes

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315\textpm32 km over L shells of ~5\textendash6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direction than in the radial direction. Our findings are crucial to quantify wave-particle interaction process, particularly the nonlinear interactions between chorus and energetic electrons.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315\textpm32 km over L shells of ~5\textendash6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direction than in the radial direction. Our findings are crucial to quantify wave-particle interaction process, particularly the nonlinear interactions between chorus and energetic electrons.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently scatter ~10- to 100-keV electrons at rates up to ~10-4 s-1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons and to >100 days for >5-MeV electrons. These newly obtained statistical properties of plume hiss and associated electron scattering effects are useful to future modeling efforts of radiation belt electron dynamics.

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

Timescales for electron quasi-linear diffusion by lower-band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity

Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5\textendash5.5. Spatiotemporal variations of ωpe/Ωce with AE shape the evolution of electron energization in the outer belt, sometimes leading to very short time scales for quasi-linear megaelectron volt electron acceleration in agreement with Van Allen Probes observations.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083446

magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions

Timescales for electron quasi-linear diffusion by lower-band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity

Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5\textendash5.5. Spatiotemporal variations of ωpe/Ωce with AE shape the evolution of electron energization in the outer belt, sometimes leading to very short time scales for quasi-linear megaelectron volt electron acceleration in agreement with Van Allen Probes observations.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083446

magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Observational evidence of the drift-mirror plasma instability in Earth\textquoterights inner magnetosphere

We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth\textquoterights inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA\textquoterights Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low frequency and high amplitude plasma waves can occur in the high beta plasma conditions of Earth\textquoterights inner magnetosphere.

Soto-Chavez, A.; Lanzerotti, L.; Manweiler, J.; Gerrard, A.; Cohen, R.; Xia, Z.; Chen, L.; Kim, H.;

Published by: Physics of Plasmas      Published on: 04/2019

YEAR: 2019     DOI: 10.1063/1.5083629

Van Allen Probes

The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations

Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left-handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local time regions with different intensity. Compared with helium band waves, hydrogen band waves behave similarly except that they are often observed in low-density regions. These results reveal several important features regarding EMIC waves excitation and propagation.

Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082633

EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes

The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations

Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left-handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local time regions with different intensity. Compared with helium band waves, hydrogen band waves behave similarly except that they are often observed in low-density regions. These results reveal several important features regarding EMIC waves excitation and propagation.

Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082633

EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes

Shorting Factor In-Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth\textquoterights Plasmasphere

Satellite-based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In-flight calibration of double-probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly exceeds any geophysical electric field of interest in the plasmasphere. Thus, the highest level of accuracy in calibration is required. The objective of this work is to discuss the accuracy of the setting sf = 1 and therefore to examine the accuracy of Van Allen Probes electric field measurements below L = 2. We introduce a method to determine the shorting factor near perigee. It relies on the idea that the value of the geophysical electric field measured in the Earth\textquoterights rotating frame of reference is independent of whether the spacecraft is approaching perigee or past perigee, that is, it is independent of spacecraft velocity. We obtain that sf = 0.994 \textpm 0.001. The resulting margins of errors in individual electric drift measurements are of the order of \textpm0.1\% of spacecraft velocity (a few meters per second).

Lejosne, Solène; Mozer, F.;

Published by: Earth and Space Science      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018EA000550

DC electric field; double probe instrument; electric drift; plasmasphere; shorting factor; Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes



  4      5      6      7      8      9