Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 87 entries in the Bibliography.


Showing entries from 1 through 50


2021

Evidence of Alfvenic Poynting flux as the primary driver of auroral motion during a geomagnetic substorm

Abstract Geomagnetic substorms are major energy transfer events where energy stored in the Earths magnetotail is released into the ionosphere. Substorm phenomena, including auroral activities, earthward Poynting flux, magnetic field dipolarization, etc, have been extensively studied. However, the complex interplay among them is not fully understood. In a fortuitous event on June 07, 2013, the twin Van Allen Probes (separated by 0.4 hour in local time) observed bursts of earthward Alfvenic Poynting flux in the vicinity of the plasma sheet boundary layer (PSBL). The Poynting flux bursts correlate with enhancements of auroral brightness around the footpoints of both spacecraft. This indicates a temporal and spatial correlation between the auroral brightening and Poynting flux bursts, and that the auroral motion is directly linked to the perpendicular expansion of the Alfven wave. These observations suggest that the Alfvenic Poynting flux is a primary driver for the auroral electron acceleration. Around the time of auroral brightening, a dipolarization was seen to propagate more than 4 hours in local time during a 20 min period. The azimuthal phase speed of this dipolarization (2 deg/min) is too small to explain the azimuthal motion of the aurora (13.6 deg/min), but the dipolarization could be related to the generation of the Alfvenic Poynting flux through phase mixing at strong density gradients like those in the PSBL. This article is protected by copyright. All rights reserved.

Tian, S.; Colpitts, C.; Wygant, J.; Cattell, C.; Ferradas, C.; Igl, A.; Larsen, B.; Reeves, G.; Donovan, E.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029019

Poynting flux; auroral physics; discrete arc; Dipolarization; Alfven waves; Van Allen Probes

Van Allen probe observations of disappearance, recovery and patchiness of plasmaspheric hiss following two consecutive interplanetary shocks: First results

Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space density and linear wave growth rates showed that the shock did not change the growth rate of whistler waves within the core frequency range of plasmaspheric hiss (0.1 - 0.5 kHz) during this interval making conditions unfavorable for the generation of hiss. The recovery began at ∼16:45 UT which is attributed to an enhancement in local plasma instability initiated by the first shock-induced substorm and additional possible contribution from chorus waves. This time, the wave growth rate peaked within the core frequency range ( ∼350 Hz). The second shock arrived at 18:02 UT and generated patchy hiss persisting up to ∼19:00 UT. It is shown that an enhanced growth rate and additional contribution from shock-induced poloidal Pc5 mode (periodicity ∼240 sec) ULF waves resulted in the excitation of hiss waves during this period. The hiss wave amplitudes were found to be additionally modulated by background plasma density and fluctuating plasmapause location. The investigation highlights the important roles of interplanetary shocks, substorms, ULF waves and background plasma density in the variability of plasmaspheric hiss.

Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028873

Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes

RBSP-ECT Combined Pitch Angle Resolved Electron Flux Data Product

Abstract We describe a new data product combining pitch angle resolved electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration s Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of pitch-angle-resolved spectra for the entire Van Allen Probes mission. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product offers researchers a consistent cross calibrated data set to explore the particle dynamics of the inner magnetosphere across a wide range of energies. This article is protected by copyright. All rights reserved.

Boyd, A.J.; Spence, H.E.; Reeves, G.D.; Funsten, H.O; Skoug, R.K.; Larsen, B.A.; Blake, J.B.; Fennell, J.F.; Claudepierre, S.G.; Baker, D.N.; Kanekal, S.K.; Jaynes, A.N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028637

Van Allen Probes; Radiation belts; ECT; MAGEis; REPT; HOPE

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with energies of 10-100 eV. The results show that warm ion flux enhancements associated with the density cavities were observed more frequently for H+, then for He+ and the least frequently for O+. The occurrences of the associated flux enhancements were increased when considering only the cavities inside the plasmasphere. Possible mechanisms responsible for the observed warm ion flux enhancements and the role of density cavities on these ion flux enhancements are discussed.

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028326

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere

Abstract We present a statistical study of density cavities observed in the inner magnetosphere by the Van Allen Probes during four one-month periods: February 2013, July 2013, January 2014 and June 2014. These periods were chosen to allow the survey of all magnetic local times. We find that density cavities are a recurrent feature of the density profiles of in situ measurements in the inner magnetosphere. We further investigate the correlation between the density cavities and the enhancement of fluxes of warm ions with energies of 10-100 eV. The results show that warm ion flux enhancements associated with the density cavities were observed more frequently for H+, then for He+ and the least frequently for O+. The occurrences of the associated flux enhancements were increased when considering only the cavities inside the plasmasphere. Possible mechanisms responsible for the observed warm ion flux enhancements and the role of density cavities on these ion flux enhancements are discussed.

Ferradas, C.; Boardsen, S.; Fok, M.-C.; Buzulukova, N.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028326

Magnetosphere: inner; plasmasphere; magnetospheric configuration and dynamics; plasma waves and instabilities; plasma sheet; density cavity; cold ion heating; cold ions; warm Plasma cloak; Van Allen Probes

Bayesian Model for HOPE Mass Spectrometers on Van Allen Probes

Abstract Space instruments rely heavily on modeling to predict and understand the instrument response, enabling a determination of the capabilities and resolution. The Bayesian approach provides a framework to incorporate prior knowledge and propagate uncertainty to predict the instrument response. We present an empirical Bayes model for the end-to-end performance of the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers aboard the Van Allen Probes mission. In this model, we use a combination of external modeling, laboratory calibration, and expert opinion to construct the time-of-flight spectra and demonstrate good agreement with on-orbit data. The empirical Bayes model is applied to explore doubly charged ions and carbon, nitrogen, oxygen discrimination during the Van Allen Probes mission. This article is protected by copyright. All rights reserved.

Vira, A.; Larsen, B.; Skoug, R.; Fernandes, P.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028862

Van Allen Probes

2020

Equatorial pitch angle distributions of 1 – 50 keV electrons in Earth s inner magnetosphere: an empirical model based on the Van Allen Probes observations

Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pancake PADs, and the lack of butterfly PADs is likely due to their relatively flat or positive flux radial gradients at higher altitudes. During geomagnetically quiet times, more anisotropic distributions of 1 – 10s of keV electrons at dayside than nightside are observed, which could be responsible for moderate chorus wave activities at dayside during quiet times as reported by previous studies. During active times, the anisotropy of 1 – 10s of keV electrons significantly enhances, consistent with the enhanced chorus wave activity during active times and suggesting the critical role of 1 – 10s of keV electrons in generating chorus waves in Earth s inner magnetosphere. Different enhanced anisotropy patterns of different energy electrons are also observed during active times: at R>∼4 RE, keV electrons are more anisotropic at dawn to noon, while 10s of keV electrons have larger anisotropy at midnight to dawn. These differences, combined with the statistical distribution of chorus waves shown in previous studies, suggest the differential roles of electrons with different energies in generating chorus waves with different properties. This article is protected by copyright. All rights reserved.

Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028322

Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes

Lower-Band “Monochromatic” Chorus Riser Subelement/Wave Packet Observations

Three lower-band (f < 0.5 fce) chorus riser elements detected in the dayside generation region were studied in detail using the Van Allen Probe data. Two subelements/wave packets within each riser were examined for their wave “frequency” constancy within seven consecutive wave cycles. The seven wave cycles contained the maximum amplitudes of the subelements/packets. Maximum variance B1 zero crossings were used for the identification of wave cycle start and stop times. It is found that the frequency is constant to within ~3\% (one standard deviation), with no evidence of upward frequency sweeping over the seven cycles. Continuous wavelet power spectra for the duration of the seven cycles confirm this conclusion. The implication is that a chorus riser element is composed of coherent approximately “monochromatic” steps instead of a gradual sweep in frequency over the whole element. There was no upward frequency stepping where the wave amplitude was the largest, contrary to the sideband theory prediction. It is shown that a chorus riser involves instability of cyclotron resonant energetic electrons from ~6 to ~40 keV at L = 5.8, that is, essentially the whole substorm electron energy spectrum. The above findings may have important consequences for possible wave generation mechanisms. Some new ideas for mechanisms are suggested in conclusion.

Tsurutani, Bruce; Chen, Rui; Gao, Xinliang; Lu, Quanming; Pickett, Jolene; Lakhina, Gurbax; Sen, Abhijit; Hajra, Rajkumar; Park, Sang; Falkowski, Barbara;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028090

chorus coherency; chorus subelement monochromaticity; a modified theory needed; Van Allen Probes

Defining Radiation Belt Enhancement Events Based on Probability Distributions

We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of times, “events,” using variable flux thresholds to determine average event occurrence in arbitrary 11-year intervals (“cycles”). We define moderate, strong, and intense events as those that occur 100, 10, and 1 time per cycle and identify the flux thresholds that produce those occurrence frequencies. The methodology does not depend on any ancillary data set (e.g., solar wind or geomagnetic conditions). We show event probabilities using GOES > 2 MeV fluxes and compare them against event probabilities using LANL 1.8–3.5 MeV fluxes. We present some examples of how the methodology picks out moderate, strong, and intense events and how those events are distributed in time: 1989 through 2018, which includes the declining phases of solar cycles 22, 23, and 24. We also provide an illustrative comparison of moderate and strong events identified in the geosynchronous data with Van Allen Probes observations across all L-shells. We also provide a catalog of start and stop times of moderate, strong, and intense events that can be used for future studies.

Reeves, Geoffrey; Vandegriff, Elizabeth; Niehof, Jonathan; Morley, Steven; Cunningham, Gregory; Henderson, Michael; Larsen, Brian;

Published by: Space Weather      Published on: 06/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002528

Radiation belts; methods; geosynchronous; energetic particles; hazards; Solar Cycle; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmidnight sector. We estimate peak low-altitude ion flux from ENAs near the Earth s limb. For a local perspective, we use spin-averaged proton fluxes from the RBSP A Helium Oxygen Proton Electron (HOPE) spectrometer. We find that the 1000 UT dipolarization triggered an abrupt and significant increase in low-altitude ions and a gradual but modest increase in the high-altitude RC. The relative strength and timing of the low versus high-altitude flux indicate that the dipolarization isotropized the injected ions and initially filled the loss cone. The substorm injection brought cooler ions in from the magnetotail, reducing the peak energy at both low and high altitudes. The post-dipolarization low-altitude flux exhibited a decay rate dispersion favoring longer decay times at lower energies, possibly caused by growth of the low energy RC providing enhanced flux into the loss cone. A variety of finer scale local injection structures were observed in the high-altitude RC both before and after the dipolarization, and the average system level RC intensity increased after 1000 UT.

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmidnight sector. We estimate peak low-altitude ion flux from ENAs near the Earth s limb. For a local perspective, we use spin-averaged proton fluxes from the RBSP A Helium Oxygen Proton Electron (HOPE) spectrometer. We find that the 1000 UT dipolarization triggered an abrupt and significant increase in low-altitude ions and a gradual but modest increase in the high-altitude RC. The relative strength and timing of the low versus high-altitude flux indicate that the dipolarization isotropized the injected ions and initially filled the loss cone. The substorm injection brought cooler ions in from the magnetotail, reducing the peak energy at both low and high altitudes. The post-dipolarization low-altitude flux exhibited a decay rate dispersion favoring longer decay times at lower energies, possibly caused by growth of the low energy RC providing enhanced flux into the loss cone. A variety of finer scale local injection structures were observed in the high-altitude RC both before and after the dipolarization, and the average system level RC intensity increased after 1000 UT.

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in the source region. Although most equatorial noise emissions are continuous in time, some events exhibit a clear quasiperiodic time modulation of the wave intensity, with typical modulation periods on the order of minutes. We analyze 72 such events (17 observed by the Cluster spacecraft, 55 observed by the Van Allen Probes spacecraft) for which high-resolution data were available. The analysis of the observed harmonic structure allows us to determine source radial distances of the events. It is found that the calculated source radial distances are generally close to the radial distances where the events were observed. The harmonic numbers where the events are generated range between about 12 and 30. Two events for which the spacecraft passed through the generation region were identified and analyzed. No simultaneous ultra-low-frequency magnetic field pulsations and no periodic plasma number density variations were observed. Although the in situ measured proton distribution functions were shown to be responsible for the wave growth, an insufficient resolution of the particle instruments prevented us from detecting a quasiperiodic modulation possibly present in the particle data.

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

2019

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

RBSP-ECT Combined Spin-Averaged Electron Flux Data Product

We describe a new data product combining the spin-averaged electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration\textquoterights Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of spectra for September 2013 to the present. Three-minute-averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product provides additional utility to the ECT data and offers a consistent cross calibrated data set for researchers interested in examining the dynamics of the inner magnetosphere across a wide range of energies.

Boyd, A.; Reeves, G.; Spence, H.; Funsten, H.; Larsen, B.; Skoug, R.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Kanekal, S.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026733

ECT; HOPE; MAGEis; Radiation belts; REPT; Van Allen Probes

Comparison of Electron Loss Models in the Inner Magnetosphere During the 2013~St. Patrick\textquoterights Day Geomagnetic Storm

Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment Modelling Challenge Event of the 2013 St. Patrick\textquoterights Day storm. Three models (Case 1, Case 2, and Case 3) of electron lifetimes due to wave-induced pitch angle scattering are used to compute the fluxes, which are compared with measurements from the Van Allen Probes. The three models consider electron losses due to interactions with whistler mode hiss waves inside the plasmasphere and with whistler mode chorus waves outside the plasmasphere. The Case 1 (historical) model produces excessive loss at low L shells before and after the storm, suggesting that it overestimates losses due to hiss during quiet times. During the storm main phase and early recovery all three models show good agreement with the observations, indicating that losses due to chorus during disturbed times are, in general, well accounted for by the models. Furthermore, the more recent Case 2 and Case 3 models show overall better agreement with the observed fluxes.

Ferradas, C.; Jordanova, V.; Reeves, G.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019JA026649

electron lifetime; electron loss; numerical modeling; pitch angle scattering; Van Allen Probes; Weimer electric field model

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our fit to the statistical distribution versus temperature.

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

2018

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self-consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctuations is larger than the radial component, indicating wave propagation mainly along the azimuthal direction. Because the simulation box is within the source region, this also implies wave amplification mainly during azimuthal propagation. The excellent agreement between the wave polarization properties of the present simulations and the recently reported observations is clear evidence that the main wave amplification occurs during azimuthal propagation in the source region.

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes

Determining the wave vector direction of equatorial fast magnetosonic waves

We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wave vector is preferentially in the azimuthal direction as opposed to the radial direction. From Poynting flux analysis one would infer that the wave vector is primarily in the radial direction. We show that the error in the Poynting flux is large ~ 90\textdegree. These results strongly imply that the wave growth occurs during azimuthal propagation in the source region for this event.

Boardsen, Scott; Hospodarsky, George; Min, Kyungguk; Averkamp, Terrance; Bounds, Scott; Kletzing, Craig; Pfaff, Robert;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078695

equatorial fast magnetosonic; E-field polarization analysis; Poynting Flux analysis; Van Allen Probes; wave vector analysis

Plasma anisotropies and currents in the near-Earth plasma sheet and inner magnetosphere

The region occupying radial distances of \~3 - 9 Earth radii (RE) in the night side, includes the near-Earth plasma sheet with stretched magnetic field lines and the inner magnetosphere with strong dipolar magnetic field. In this region, the plasma flow energy, which was injected into the inner magnetosphere from the magnetotail, is converted to particle heating and electromagnetic wave generation. These important processes are controlled by plasma anisotropies, which are the focus of this study. Using measurements of THEMIS and Van Allen Probes in this transition region we obtain radial profiles of ion and electron temperatures and anisotropies for various geomagnetic activity levels. Ion and electron anisotropies vary with the geomagnetic activity in opposite directions. Parallel anisotropic ions are observed together with transversely anisotropic electrons, whereas the change of ion anisotropy from parallel to transverse (with increasing Kp) is accompanied by the electron anisotropy changing from transverse to parallel. Based on plasma anisotropy observations, we estimate that the anisotropy-related currents (curvature currents) are about 10 - 20\% of the diamagnetic currents.

Artemyev, A.; Zhang, X.-J.; Angelopoulos, V.; Runov, A.; Spence, H.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025232

injections; inner magnetosphere; plasma currents; plasma sheet; Van Allen Probes

Equatorial noise with quasiperiodic modulation: Multipoint observations by the Van Allen Probes spacecraft

Electromagnetic wave measurements performed by the two Van Allen Probes spacecraft are used to analyze equatorial noise emissions with a quasiperiodic modulation of the wave intensity. These waves are confined to the vicinity of the geomagnetic equator, and they occur primarily on the dayside. In situ plasma number density measurements are used to evaluate density variations related to the wave occurrence. It is shown that the events are sometimes effectively confined to low density regions, being observed at successive satellite passes over a time duration as long as one hour. The events typically occur outside the plasmasphere, and they are often cease to exist just at the plasmapause. The analysis of the spatial separations of the spacecraft at the times when the events were observed simultaneously by both of them allows us to estimate the event spatial dimensions. It is found that the event spatial extent is typically lower than about 0.25RE in radial distance and within about one hour in magnetic local time. Modulation periods of the events decrease with increasing plasma number density up to about 100cm-3. Principally no dependence is observed at larger densities, possibly indicating a propagation from other locations.

emec, F.; ik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025482

equatorial noise; quasiperiodic modulation; RBSP; Van Allen Probes

Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes\textquoteright measurements

We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes\textquoteright (1.1\textendash5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) Ahp, \~0.81 to 1.00 (\~0.62), observed in the dawn (dusk), 0000 < MLT <= 1200 (1200 < MLT <= 2400), sectors. Measurements of Ahp are found to decrease in the presence of EMIC wave activity. Ahp amplification factors are determined and vary with respect to EMIC wave-band and MLT. He+-band events generally require double (quadruple) the measured Ahp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.

Saikin, A.A.; Jordanova, V.K.; Zhang, J.C.; Smith, C.W.; Spence, H.E.; Larsen, B.A.; Reeves, G.D.; Torbert, R.B.; Kletzing, C.A.; Zhelavskaya, I.S.; Shprits, Y.Y.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2018.01.024

EMIC waves Van Allen Probes Linear theory Wave generation; Van Allen Probes

2017

Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling

Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017JA024702

Geomagnetic storm; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model

The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries

The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux of each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O+ and He+) become increasingly important during such periods as charge-exchange reactions result in faster loss for H+ than for O+ or He+. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.

Denton, M.; Thomsen, M.; Reeves, G.; Larsen, B.; Henderson, M.; Jordanova, V.; Fernandes, P.; Friedel, R.; Skoug, R.; Funsten, H.; MacDonald, E.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024475

plasma sheet; Van Allen Probes

The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries

The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux of each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O+ and He+) become increasingly important during such periods as charge-exchange reactions result in faster loss for H+ than for O+ or He+. Results confirm previous investigations showing that the ion composition of the plasma sheet can be largely understood (and predicted) during calm intervals from knowledge of: (a) the composition of previously injected plasma at the onset of calm conditions, and (b) use of simple drift-physics models combined with calculations of charge-exchange losses.

Denton, M.; Thomsen, M.; Reeves, G.; Larsen, B.; Henderson, M.; Jordanova, V.; Fernandes, P.; Friedel, R.; Skoug, R.; Funsten, H.; MacDonald, E.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024475

plasma sheet; Van Allen Probes

The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

Ionospheric heavy ions play an important role in the dynamics of Earth\textquoterights magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

Jahn, J.-M.; Goldstein, J.; Reeves, G.; Fernandes, P.; Skoug, R.; Larsen, B.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024183

geomagnetic activity; inner magnetosphere; plasma composition; plasma density; statistics; Van Allen Probes

The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant μ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new \textquotedblleftafternoon bulge\textquotedblright plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100\textendash2000 MLT and L shell 2\textendash4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024160

inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes

The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activity. We present a new tool built on the UBK modeling technique for classifying plasma sheet particle access to the inner magnetosphere. This new tool generates access maps for particles of constant energy for more direct comparison with in situ measurements, rather than the traditional constant μ presentation typically associated with UBK. We present for the first time inner magnetosphere abundances of O+ flux relative to H+ flux as a function of Kp, L, MLT, and energy. At L = 6, the O+/H+ ratio increases with increasing Kp, consistent with previous results. However, at L < 5 the O+/H+ ratio generally decreases with increasing Kp. We identify a new \textquotedblleftafternoon bulge\textquotedblright plasma population enriched in 10 keV O+ and superenriched in 10 keV He+ that is present during quiet/moderate geomagnetic activity (Kp < 5) at ~1100\textendash2000 MLT and L shell 2\textendash4. Drift path modeling results are consistent with the narrow energy and approximate MLT location of this enhancement, but the underlying physics describing its formation, structure, and depletion during higher geomagnetic activity are currently not understood.

Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024160

inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes

Roles of hot electrons in generating upper-hybrid waves in the earth\textquoterights radiation belt

Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth\textquoterights radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.

Hwang, J.; Shin, D.; Yoon, P.; Kurth, W.; Larsen, B.; Reeves, G.; Lee, D;

Published by: Physics of Plasmas      Published on: 06/2017

YEAR: 2017     DOI: 10.1063/1.4984249

Hot carriers; Magnetized plasmas; Radiation belts; Singing; Van Allen Probes; Whistler waves

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be \~100; (2) the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (\~0.1); (3) the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and (4) the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of \~80 keV protons. We show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

This paper presents observations of ultra-low frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred two days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the pre-midnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be \~100; (2) the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (\~0.1); (3) the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and (4) the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of \~80 keV protons. We show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr; Manweiler, Jerry; Spence, Harlan; Singer, Howard; Claudepierre, Seth; Larsen, Brian; Soto-Chavez, Rualdo; Cohen, Ross;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023770

drift-bounce resonance; high m ULF waves; Second harmonic poloidal mode; Van Allen Probes

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions\textquoteright polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions\textquoteright polarization drift in the electric field of an EMIC wave.

Khazanov, G.; Boardsen, S.; Krivorutsky, E.; Engebretson, M.; Sibeck, D.; Chen, S.; Breneman, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA022814

nonlinear phenomena; parametric processes; Van Allen Probes; wave/wave interactions

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions

Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alamos National Laboratory satellites. The fluxes of electrons from ~30 eV to 1 keV are quantified as a function of pitch-angle, McIlwain L parameter, and local time for both quiet and active periods. Results indicate two sources for low-energy electrons in this energy range: the low-energy tail of the electron plasma sheet and the high-energy tail of the dayside ionosphere. These populations are identified primarily as a result of their different pitch-angle distributions. Field-aligned outflows from the dayside ionosphere are observed at all L shells during quiet and active periods. Our results also demonstrate that the dayside electron field-aligned fluxes at ~30 eV are particularly strong between L values of 6 and 7, indicating an enhanced source within the polar ionosphere.

Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023648

inner magnetosphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional math formula drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements\textemdashgenerally between 0.2 and 2 eV (2000\textendash20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes.

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023047

plasmasphere; Van Allen Probes

2016

Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet

We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016GL071359

drift path; ion injection; ion nose structure; numerical modeling; Van Allen Probes; Weimer electric field model

Ion nose spectral structures observed by the Van Allen Probes

We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

Ferradas, C.; Zhang, J.-C.; Spence, H.; Kistler, L.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016JA022942

inner magnetosphere; ion injection; Ion structure; plasma sheet; ring current; Van Allen Probes

Ring Current Pressure Estimation with RAM-SCB using Data Assimilation and Van Allen Probe Flux Data

Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is important for understanding the formation and evolution of the ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB model is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of the ring current following an isolated substorm event on July 18, 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to improve the characterization of particle distribution in the near-Earth regions.

Godinez, Humberto; Yu, Yiqun; Lawrence, Eric; Henderson, Michael; Larsen, Brian; Jordanova, Vania;

Published by: Geophysical Research Letters      Published on: 11/2016

YEAR: 2016     DOI: 10.1002/2016GL071646

data assimilation; ring current; Van Allen Probes

EMIC waves and associated relativistic electron precipitation on 25-26 January 2013

Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25\textendash26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1\textendash3.9 and magnetic local time (MLT) = 21.0\textendash23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2\textendash4.3 and MLT = 20.7\textendash20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy Emin, and electron pitch angle diffusion coefficient Dαα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.

Zhang, Jichun; Halford, Alexa; Saikin, Anthony; Huang, Chia-Lin; Spence, Harlan; Larsen, Brian; Reeves, Geoffrey; Millan, Robyn; Smith, Charles; Torbert, Roy; Kurth, William; Kletzing, Craig; Blake, Bernard; Fennel, Joseph; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2016

YEAR: 2016     DOI: 10.1002/2016JA022918

BARREL; EMIC waves; FFT; Geomagnetic storm; relativistic electron precipitation (REP); Van Allen Probes

The complex nature of storm-time ion dynamics: Transport and local acceleration

Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm-injected plasma.

Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070878

plasmasheet; Van Allen Probes

The complex nature of storm-time ion dynamics: Transport and local acceleration

Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm-injected plasma.

Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070878

plasmasheet; Van Allen Probes

Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance

Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves ranging between 150 and 600 Hz. Measurements from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data set are used to analyze waves of this frequency in near-Earth space. However, when we examine the polarization of the waves in the 150 to 600 Hz range in the equatorial plane, the majority are right-hand polarized plasmaspheric hiss waves. The 1-10 eV H+ equatorially mirroring population does not interact with right hand waves, despite a strong statistical relationship suggesting the two is linked. We present evidence supporting the relationship, both in our own work and the literature, but we ultimately conclude that the 1-10 eV H+ heating is not related to the strong enhancement of 150 to 600 Hz waves.

Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; ik, Ondrej; Morley, Steven; Breneman, Aaron; Larsen, Brian; Reeves, Geoff; Wygant, John; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark; Katus, Roxanne; Zou, Shasha;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016JA022975

equatorial noise; Low Energy Ions; plasma waves; plasmasphere; Plasmaspheric Hiss; Van Allen Probes

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. The spectral evolution manifests the characteristics of adiabatic acceleration and density increase of oxygen ions. Warm (0.1\textendash10 keV) oxygen measured by the Helium, Oxygen, Proton, and Electron (HOPE) instrument was enhanced prior to the storm mostly in magnetic field-aligned directions. The most reasonable scenario of this event is that warm oxygen ions that preexisted in the inner magnetosphere were picked up and adiabatically transported and accelerated by spatially localized, temporarily impulsive electric fields.

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

Local time variations of high-energy plasmaspheric ion pitch angle distributions

Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1\textendash10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results characterize the nature of the dearth of the near 90\textdegree pitch angle 1\textendash10 eV ion population in the near-Earth postmidnight sector. This study also shows, for the first time, low-energy HOPE differential number fluxes corrected for spacecraft potential and 1\textendash10 eV H+ fluxes at different levels of geomagnetic activity.

Sarno-Smith, Lois; Liemohn, Michael; Skoug, Ruth; Larsen, Brian; Moldwin, Mark; Katus, Roxanne; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2015JA022301

algorithm; Magnetosphere; pitch angles; plasmasphere; spacecraft potential corrections; Van Allen Probes

Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L < 6.6

We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5\textendash6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20\textendash50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1\textendash5 keV appears with a clear energy-dispersion signature only for O+, and (5) the energy-dispersed O+ flux enhancement appears in directions parallel or anti-parallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O+ ions at >20 keV. We conclude that O+ ions at L = 5.4\textendash6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5\textendash5.4, however, only the former acceleration is plausible. We also conclude that the field-aligned energy-dispersed O+ ions at 0.1\textendash5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.

e, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.; Larsen, B.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2016

YEAR: 2016     DOI: 10.1002/2016JA022549

Dipolarization; inner magnetosphere; ionospheric outflow; Magnetic Fluctuation; O+ Acceleration; substorm; Van Allen Probes



  1      2