Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 214 entries in the Bibliography.


Showing entries from 151 through 200


2015

Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons

Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified yet. Here, we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1 , 2, and 3 ) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler-mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude \~A and normalized wave number inline image. The threshold for higher harmonic resonance is more strict, favoring higher \~A and inline image and the change in equatorial pitch angle is strongly controlled by inline image. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasmadensity, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90o.

Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard; Li, Jinxing; Dai, Lei; Zhan, Xiaoya;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021174

bounce resonance; equatorioal noise; magnetosonic waves; nonlinear; Radiation belt; wave particle interaction

Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow h distribution (when delta theta >= 0.05 degrees), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth\textquoterights radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes > 300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth\textquoterights magnetotail. (C) 2015 AIP Publishing LLC.

Artemyev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.;

Published by: Physics of Plasmas      Published on: 06/2015

YEAR: 2015     DOI: 10.1063/1.4922061

chorus waves; CLUSTER SPACECRAFT; equatorial noise; MAGNETIC-FIELD; PLASMA; Quasi-linear diffusion; radiation belt electrons; RESONANT SCATTERING; Van Allen Probes; WHISTLER-MODE WAVES

Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT

Although most studies of the effects of EMIC waves on Earth\textquoterights outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 hours at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern footpoint of the Van Allen Probes observed 30-80 keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L-shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event.

Engebretson, M.; Posch, J.; Wygant, J.; Kletzing, C.; Lessard, M.; Huang, C.-L.; Spence, H.; Smith, C.; Singer, H.; Omura, Y.; Horne, R.; Reeves, G.; Baker, D.; Gkioulidou, M.; Oksavik, K.; Mann, I.; Raita, T; Shiokawa, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021227

EMIC waves; magnetospheric compressions; Radiation belts; Van Allen Probes

Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves

Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well as analytically, using Van Allen Probes data. The resulting electron acoustic wave is considered to be the source of electron scale TDS. The measured parameters of the three waves (two whistlers and the electron acoustic wave) are in a good agreement with an assumption of their parametric interaction: ω0 = ω1 + ω2 and inline image. The bi-coherence analysis shows the non-linear nature of the observed electron-acoustic waves as well as the whistler wave and electron acoustic wave phase relation. The estimated decay instability growth rate shows that the process of three wave interaction can develop in a characteristic time smaller than one second, thus the process is rapid enough to explain the observations. This induced parametric interaction can be one of the mechanisms for quasi-periodic TDS generation in the outer Van Allen radiation belt.

Agapitov, O.; Krasnoselskikh, V.; Mozer, F.; Artemyev, A.; Volokitin, A.;

Published by: Geophysical Research Letters      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015GL064145

electron acoustic waves; nonlinear structure formation; parametric decay of whistlers; Van Allen Probes

Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics

Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss using the new statistical frequency spectrum and the previously adopted Gaussian spectrum and find that the differences are up to a factor of ~5 and are dependent on energy and L shell. Moreover, the new statistical hiss wave frequency spectrum including wave power below 100 Hz leads to increased pitch angle scattering rates by a factor of ~1.5 for electrons above ~100 keV at L~5, although their effect is negligible at L <= 3. Consequently, we suggest that the new realistic hiss wave frequency spectrum should be incorporated into future modeling of radiation belt electron dynamics.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021048

hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90\textdegree pitch angle with n-values of 2\textendash3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from EMIC waves scattering. During quiet periods, n-values generally evolve to become small, i.e., 0\textendash1. The slow and long-term decays of the ultra-relativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell dependent decay timescales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay timescales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss induced pitch angle scattering and inward radial diffusion. As L shell increases to L ~ 3.5, a narrow region exists (with a width of ~0.5 L) where the observed ultra-relativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinn α function fitting and the estimate of decay timescale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultra-relativistic electrons and to assess their relative contributions.

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Wave energy budget analysis in the Earth\textquoterights radiation belts uncovers a missing energy

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth\textquoterights magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth\textquoterights magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80\% of the wave energy involved in wave\textendashparticle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth\textquoterights radiation belts, controlled by solar activity.

Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.;

Published by: Nature Communications      Published on: 05/2015

YEAR: 2015     DOI: 10.1038/ncomms8143

Astronomy; Fluids and plasma physics; Physical sciences; Planetary sciences

Equatorial noise emissions with quasiperiodic modulation of wave intensity

Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5\% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46\% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

emec, F.; Santolik, O.; a, Hrb\; Pickett, J.; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020816

equatorial noise; magnetosonic waves; quasiperiodic modulation

Time Domain Structures: what and where they are, what they do, and how they are made

Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are >=1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field-aligned electrons that may be responsible for some types of auroras. These field-aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric field. The second process is Fermi acceleration due to reflection of electrons by the TDS. The third process is an effective and rapid pitch angle scattering resulting from electron interactions with the perpendicular and parallel electric and magnetic fields of many TDS. TDS are created by current-driven and beam-related instabilities and by whistler-related processes such as parametric decay of whistlers and non-linear evolution from oblique whistlers. New results on the temporal relationship of TDS and particle injections, types of field-aligned electron pitch angle distributions produced by TDS, the mechanisms for generation of field-aligned distributions by TDS, the maximum energies of field-aligned electrons created by TDS in the absence of whistler mode waves, TDS generation by oblique whistlers and three-wave-parametric decay, and the correlation between TDS and auroral particle precipitation, are presented.

Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063946

Time Domain Structures; TDS

Very Oblique Whistler Generation By Low Energy Electron Streams

Whistler-mode chorus waves are present throughout the Earth\textquoterights outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution possesses both a significant temperature anisotropy above 3-4 keV and a plateau or heavy tail in parallel velocities at lower energies encompassing simultaneous Landau resonance with the same waves. The corresponding frequency and wave normal angle distributions of the generated very oblique lower-band chorus waves, as well as their frequency sweep rate, are evaluated analytically and compared with satellite observations, showing a reasonable agreement.

Mourenas, D.; Artemyev, A.; Agapitov, O.; Krasnoselskikh, V.; Mozer, F.S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021135

Chorus wave; Cyclotron resonance; Landau resonance; oblique whistler; wave generation

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001\textendash2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.

emec, F.; Santolik, O.; a, Hrb\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020814

equatorial noise; magnetosonic waves

Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Troms\o and the satellite observed rising tone emissions of the lower-band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave\textendashparticle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of sub-relativistic electrons and the pulsating aurora.

Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020690

EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes

Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

We study the formation process of an oxygen torus during the 12\textendash15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfv\ en waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M \~ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0\textendash4.0 and L = 3.7\textendash4.5, respectively, on the morning side. The oxygen torus has M = 4.5\textendash8 amu and extends around the plasmapause that is identified at L\~3.2\textendash3.9. We find that during the initial phase, M is 4\textendash7 amu throughout the plasma trough and remains at \~1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase.

e, Nos\; Oimatsu, S.; Keika, K.; Kletzing, C.; Kurth, W.; De Pascuale, S.; Smith, C.; MacDowall, R.; Nakano, S.; Reeves, G.; Spence, H.; Larsen, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020593

inner magnetosphere; magnetic storm; oxygen torus; plasmasphere; ring current; ULF waves; Van Allen Probes

Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission

We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations\textendashSpectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have developed selection criteria for the visual identification of these emissions, and we have compiled a list of more than 2000 events identified during the analyzed time period. The evolution of the Cluster orbit enables us to investigate a large range of McIlwain\textquoterights parameter from about L\~1.1 to L\~10. We demonstrate that EN can occur at almost all analyzed L shells. However, the occurrence rate is very low (<6\%) at L shells below L=2.5 and above L=8.5. EN mostly occurs between L=3 and L=5.5, and within 7\textdegree of the geomagnetic equator, reaching 40\% occurrence rate. This rate further increases to more than 60\% under geomagnetically disturbed conditions. Analysis of occurrence rates as a function of magnetic local time (MLT) shows strong variations outside of the plasmasphere (with a peak around 15 MLT), while the occurrence rate inside the plasmasphere is almost independent on MLT. This is consistent with the hypothesis that EN is generated in the afternoon sector of the plasmapause region and propagates both inward and outward.

a, Hrb\; Santolik, O.; emec, F.; a, Mac\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020268

equatorial noise; magnetosonic waves; plasmasphere; Radiation belts

Field-aligned chorus wave spectral power in Earth\textquoterights outer radiation belt

Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave\textendashparticle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40\textdegree. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1\textendash100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 <= L <= 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.

Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E.; Haaland, S.; Daly, P.; Krasnoselskikh, V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.;

Published by: Annales Geophysicae      Published on: 01/2015

YEAR: 2015     DOI: 10.5194/angeo-33-583-2015

Chorus-type whistler waves

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support that chorus from large L-shells, where it was previously considered unable to propagate into the plasmasphere, can in fact be the source of hiss.

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes

2014

Wave normal angles of whistler-mode chorus rising and falling tones

We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (\textpm20\textdegree), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk\~40\textdegree. Below θk\~40\textdegree, the average value for θk is predominantly field aligned, but slightly increasing with frequency toward half of fc,e (θk up to 20\textdegree). Above half of fc,e, the average θk is again decreasing with frequency. Above θk\~40\textdegree, wave normal angles are usually close to the resonance cone angle. Furthermore, we present a detailed comparison of electric and magnetic fields of chorus rising and falling tones. Falling tones exhibit peaks in occurrence solely for θk>40\textdegree and are propagating close to the resonance cone angle. Nevertheless, when comparing rising tones to falling tones at θk>40\textdegree, the ratio of magnetic to electric field shows no significant differences. Thus, we conclude that falling tones are generated under similar conditions as rising tones, with common source regions close to the magnetic equatorial plane.

Taubenschuss, Ulrich; Khotyaintsev, Yuri; ik, Ondrej; Vaivads, Andris; Cully, Christopher; Le Contel, Olivier; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020575

Chorus; wave normal

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves

The distribution of trapped energetic electrons inside the Earth\textquoterights radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet-time distributions are well-recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce and drift averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.

Mourenas, D.; Artemyev, A.; Agapitov, O.V.; Krasnoselskikh, V.; Li, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020443

electron distribution; pitch-angle distribution; Radiation belt

First observation of rising-tone magnetosonic waves

Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90\textdegree and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be \textquotedbllefttemporally continuous\textquotedblright in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, ~1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonlinear wave-particle interaction, as is the case with chorus and EMIC waves.

Fu, H.; Cao, J.; Zhima, Z.; Khotyaintsev, Y.; Angelopoulos, V.; ik, O.; Omura, Y.; Taubenschuss, U.; Chen, L.; Huang, S;

Published by: Geophysical Research Letters      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/grl.v41.2110.1002/2014GL061867

discrete; frequency sweep rate; magnetosonic wave; nonlinear wave-particle interaction; Plasmapause; rising tone

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. The coherence coefficient of rising and falling tones is extremely large (~1), while the coherence coefficient of hiss-like emissions is smaller but is still larger than 0.5. For all categories of whistler mode waves, the normalized bandwidth increases at larger L shells. Furthermore, the normalized bandwidth is positively correlated with local fpe/fce but is inversely correlated with the electron density. Interactions between radiation belt electrons and whistler mode waves have been widely described by quasi-linear diffusion theory. Our results suggest that although quasi-linear theory is not entirely applicable for modeling electron interactions with rising and falling tones due to their narrow bandwidth and high coherence coefficient, it is suitable to treat wave-particle interactions between electrons and low-amplitude hiss-like emissions. Moreover, the correlations between the normalized bandwidth of chorus waves (especially the discrete emissions) and other parameters may provide insights for the generation mechanism of chorus waves.

Gao, X.; Li, W.; Thorne, R.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020158

bandwidth; coherence coefficient; nonlinear; quasi-linear; THEMIS; whistler mode waves

Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

Pakhotin, I.; Drozdov, A; Shprits, Y; Boynton, R.; Subbotin, D.; Balikhin, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020238

Radiation belts; Space weather

Simulation of Van Allen Probes Plasmapause Encounters

We use an E \texttimes B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15\textendash20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15\textendash19 January. For 26 of 28 (92\%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is 36 min. The mean model-data difference in radial location is 0:40\textpm0:05 RE. The model-data agreement is better for strong convection than for quiet or weakly disturbed conditions. On 18 January, both RBSP spacecraft crossed a tenuous, detached plasma feature at approximately the same time and nightside location as a wrapped residual plume, predicted by the model to have formed 32 h earlier on 17 January. The agreement between simulation and data indicates that the model-provided global information is adequate to correctly interpret the RBSP density observations.

Goldstein, J.; De Pascuale, S.; Kletzing, C.; Kurth, W.; Genestreti, K.; Skoug, R.; Larsen, B.; Kistler, L.; Mouikis, C.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014JA020252

observations; plasmasphere; residual plume; simulation; Van Allen Probes

Calculation of whistler-mode wave intensity using energetic electron precipitation

The energetic electron population measured by multiple low-altitude POES satellites is used to infer whistlermode wave amplitudes using a physics-based inversion technique. We validate this technique by quantitatively analyzing a conjunction event between the Van Allen Probes and POES, and find that the inferred hiss wave amplitudes from POES electron measurements agree remarkably well with directly measured hiss waves amplitudes. We also use this technique to construct the global distribution of chorus wave intensity with extensive coverage over a broad L-MLT region during the 8\textendash9 October 2012 storm and demonstrate that the inferred chorus wave amplitudes agree well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The evolution of the whistler-mode wave intensity inferred from low-altitude electron measurements can provide real-time global estimates of the wave intensity, which cannot be obtained from in-situ wave measurements by equatorial satellites alone, but are crucial in quantifying radiation belt electron dynamics.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929965

Electron traps; Energy measurement; Plasma measurements; Van Allen Probes

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves

Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This provides plausible experimental evidence of stronger pitch-angle scattering loss caused by oblique waves than by quasi-parallel waves with the same magnetic wave amplitudes, as predicted by numerical calculations.

Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061260

chorus waves; electron precipitation; oblique whistler; pitch angle scattering

Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves

We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth\textquoterights radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail inline image such that η < 5/2, the efficiency of nonlinear acceleration could be more effective than the conventional quasi-linear acceleration for 100 keV electrons.

Artemyev, A.; Vasiliev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.; Boscher, D.; Rolland, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1610.1002/2014GL061380

particle trapping; Radiation belts; Wave-particle interaction

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low frequency waves to undergo cyclic ray paths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within \~15 hours. A clear peak in electron phase space density observed at L* \~ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement with the observed electron PSD near its peak in timing, energy dependence, and pitch angle distribution, but other loss processes and radial diffusion may be required to explain the differences in observation and simulation at other locations away from the PSD peak. Our simulation results suggest that local acceleration by chorus waves is likely to be a robust and repetitive process and plays a critical role in accelerating radiation belt electrons from injected convective energies (\~ 100 keV) to ultra-relativistic energies (multi MeV).

Thorne, R.; Li, W.; Ma, Q.; Ni, B.; Bortnik, J.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929882

Atmospheric waves; Van Allen Belts; Van Allen Probes

Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves

We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming \~10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time \~tens of minutes.

Khazanov, G.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.;

Published by: Physics of Plasmas      Published on: 08/2014

YEAR: 2014     DOI: 10.1063/1.4892185

Diffusion; Electron scattering; Nonlinear waves; wave-particle interactions; Whistler waves

Statistical analysis of electron lifetimes at GEO: Comparisons with chorus-driven losses

The population of electrons in the Earth\textquoterights outer radiation belt increases when the magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to \~1 MeV with an analytical model of lifetimes, where electron losses are caused by their resonant interaction with oblique chorus waves, using average wave intensities obtained from Cluster statistics. However, above 500 keV, the measured lifetimes increase with energy becomes less steep, almost stopping. This could partly stem from the difficultly of identifying lifetimes larger than 10 days, for high energy, with the methods and instruments of the present study at GEO. It could also result from the departure of the actual geomagnetic field from a dipolar shape, since a compressed field on the dayside should preferentially increase chorus-induced losses at high energies. However, during nearly quiet geomagnetic conditions corresponding to lifetime measurement periods, it is more probably an indication that outward radial diffusion imposes some kind of upper limit on lifetimes of high-energy electrons near geostationary orbit.

Boynton, R.; Balikhin, M.; Mourenas, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA019920

Chorus; electron lifetimes; electron losses; oblique waves

Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions

Wave-particle interactions in the Earth\textquoterights Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth\textquoterights magnetosphere in all MLT sectors, and a large database of measurements of the STAFF-SA instrument onboard the Cluster spacecraft, covering different latitudes for a time interval of more than one solar cycle. Multicomponent measurements of these instruments are a basis for the determination of statistical properties of the wave vector directions defined by two spherical angles with respect to the direction of the local magnetic field line. We calculate the probability density functions and probability density functions weighted by the wave intensity for both these angles. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.

Santolik, O.; Hospodarsky, G.; Kurth, W.; Averkamp, T.; Kletzing, C.; Cornilleau-Wehrlin, N.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929880

Atmospheric measurements; Magnetic field measurement; Van Allen Probes

Thermal electron acceleration by localized bursts of electric field in the radiation belts

In this paper we investigate the resonant interaction of thermal ~10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth\textquoterights outer radiation belts. These structures propagate mostly away from thegeomagnetic equator and share properties of soliton-like nonlinear electron-acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (~3000-10000 km/s), and a spatial scale of electric field localization alongthe field lines is about the Debye radius of hot electrons (~5-30 km). We model the nonlinear resonant interaction of these electric field structures and cold background electrons.

Artemyev, A.; Agapitov, O.; Mozer, F.; Krasnoselskikh, V.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061248

Radiation belts; thermal electrons; Van Allen Probes; Wave-particle interaction

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of \~0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

Mozer, S.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, D.; Roth, I.;

Published by: Physical Review Letters      Published on: 07/2014

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Van Allen Probes

Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers

The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth\textquoterights outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of \~0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

Mozer, F.; Agapitov, O.; Krasnoselskikh, V.; Lejosne, S.; Reeves, G.; Roth, I.;

Published by: Phys. Rev. Lett.      Published on: 07/2014

YEAR: 2014     DOI: 10.1103/PhysRevLett.113.035001

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward boundary intensification that was followed by an auroral streamer reaching the equatorward boundary of the auroral oval. Three THEMIS satellites in the magnetotail detected flow bursts and one of the THEMIS satellites in the outer plasmasphere observed a ring current injection together with electromagnetic ion cyclotron wave intensifications. Proton auroral brightenings occurred multiple times throughout the storm main phase and a majority of those were correlated with auroral streamers reaching the auroral equatorward boundary. This sequence highlights the important role of transient flow bursts and particle injections for plasma transport into the inner magnetosphere and thus reflects a tail-inner magnetospheric interaction process in which transient flow bursts play an important role in injecting ring current ions into the plasmasphere, causing rapid modulation of precipitation and the resultant subauroral proton aurora.

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data

Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonstrate that the spatiotemporal evolution of chorus intensity in the equatorial magnetosphere can be reasonably estimated from electron flux measurements made by multiple low-altitude POES satellites with a broad coverage of L shell and magnetic local time. Such a data-based, dynamic model of chorus waves can provide near-real-time wave information on a global scale for any time period where POES electron data are available. A combination of the chorus wave spatiotemporal distribution acquired using this methodology and the direct spaceborne wave measurements can be used to evaluate the quantitative scattering caused by resonant wave-particle interactions and thus model radiation belt electron variability.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Green, Janet; Kletzing, Craig; Kurth, William; Hospodarsky, George; Pich, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.710.1002/2014JA019935

electron precipitation; global wave distribution; magnetospheric chorus; physics-based technique; wave resonant scattering

Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013

We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 \textpm 0.01, 0.15 \textpm 0.02, and 0.07 \textpm 0.02 during the three wave events, respectively. On Van Allen Probe-B, this difference never exceeds 0. Compared to linear theory (Σh > Sh), the waves are only excited for elevated thresholds.

Zhang, J.-C.; Saikin, A.; Kistler, L.; Smith, C.; Spence, H.; Mouikis, C.; Torbert, R.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Kurth, W.; Kletzing, C.; Allen, R.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/2014GL060621

Van Allen Probes

Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013

We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 \textpm 0.01, 0.15 \textpm 0.02, and 0.07 \textpm 0.02 during the three wave events, respectively. On Van Allen Probe-B, this difference never exceeds 0. Compared to linear theory (Σh > Sh), the waves are only excited for elevated thresholds.

Zhang, J.-C.; Saikin, A.; Kistler, L.; Smith, C.; Spence, H.; Mouikis, C.; Torbert, R.; Larsen, B.; Reeves, G.; Skoug, R.; Funsten, H.; Kurth, W.; Kletzing, C.; Allen, R.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/2014GL060621

Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement in magnitude, timing, energy dependence, and pitch angle distribution with the observed electron PSD near its peak location. However, radial diffusion and other loss processes may be required to explain the differences between the observation and simulation at other locations away from the PSD peak. Our simulation results, together with previous studies, suggest that local acceleration by chorus waves is a robust and ubiquitous process and plays a critical role in accelerating injected seed electrons with convective energies (~100 keV) to highly relativistic energies (several MeV).

Li, W.; Thorne, R.; Ma, Q.; Ni, B.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Kanekal, S.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019945

Van Allen Probes

Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves

Global statistics of the amplitude distributions of hiss, lightning-generated, and other whistler mode waves from terrestrial VLF transmitters have been obtained from the EXOS-D (Akebono) satellite in the Earth\textquoterights plasmasphere and fitted as functions of L and latitude for two geomagnetic activity ranges (Kp<3 and Kp>3). In particular, the present study focuses on the inner zone L∈[1.4,2] where reliable in situ measurements were lacking. Such statistics are critically needed for an accurate assessment of the role and relative dominance of each type of wave in the dynamics of the inner radiation belt. While VLF waves seem to propagate mainly in a ducted mode at L\~1.5\textendash3 for Kp<3, they appear to be substantially unducted during more disturbed periods (Kp>3). Hiss waves are generally the most intense in the inner belt, and lightning-generated and hiss wave intensities increase with geomagnetic activity. Lightning-generated wave amplitudes generally peak within 10\textdegree of the equator in the region L<2 where magnetosonic wave amplitudes are weak for Kp<3. Based on this statistics, simplified models of each wave type are presented. Quasi-linear pitch angle and energy diffusion rates of electrons by the full wave model are then calculated. Corresponding electron lifetimes compare well with decay rates of trapped energetic electrons obtained from Solar Anomalous and Magnetospheric Particle Explorer and other satellites at L∈[1.4,2].

Agapitov, O.; Artemyev, A.; Mourenas, D.; Kasahara, Y.; Krasnoselskikh, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.410.1002/2014JA019886

Inner radiation belt; Van Allen Probes; Wave-particle interaction

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase dropout exhibited enhanced losses to the atmosphere at L* < 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in <4 h. Based on POES observations of precipitating >1 MeV electrons and energetic protons, SAMPEX >1 MeV electrons, and ground observations of band-limited Pc1-2 wave activity, we show that this sudden loss was consistent with pitch angle scattering by electromagnetic ion cyclotron waves in the dusk magnetic local time sector at 3 < L* < 4. At 4 < L* < 5, local acceleration was also active during the main and early recovery phases, when growing peaks in electron PSD were observed by both Van Allen Probes and THEMIS. This acceleration corresponded to the period when IMF Bz was southward, the AE index was >300 nT, and energetic electron injections and whistler-mode chorus waves were observed throughout the inner magnetosphere for >12 h. After this period, Bz turned northward, and injections, chorus activity, and enhancements in PSD ceased. Overall, the outer belt was depleted by this storm. From the unprecedented level of observations available, we show direct evidence of the competitive nature of different wave-particle interactions controlling relativistic electron fluxes in the outer radiation belt.

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100\textendash300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes

Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission

He ions contribute to Earth\textquoterights ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights into trapped ring current energy He ions. These data provide a unique resource that will be used to provide verifications of, and improvements to, models of He ion transport and loss in Earth\textquoterights ring current region.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059175

Van Allen Probes

Testing a two-loop pattern of the substorm current wedge (SCW2L)

Recent quantitative testing of the classical (region 1 sense) substorm current wedge (SCI) model revealed systematic discrepancies between the observed and predicted amplitudes, which suggested us to include additional region 2 sense currents (R2 loop) earthward of the dipolarized region (SCW2L model). Here we discuss alternative circuit geometries of the 3-D substorm current system and interpret observations of the magnetic field dipolarizations made between 6.6RE and 11RE, to quantitatively investigate the SCW2L model parameters. During two cases of a dipole-like magnetotail configuration, the dipolarization/injection front fortuitously stopped at r ~ 9RE for the entire duration of ~ 30 min long SCW-related dipolarization within a unique, radially distributed multispacecraft constellation, which allowed us to determine the locations and total currents of both SCW2L loops. In addition, we analyzed the dipolarization amplitudes in events, simultaneously observed at 6.6RE, 11RE and at colatitudes under a wide range of magnetograph conditions. We infer that the ratio I2/I1 varies in the range 0.2 to 0.6 (median value 0.4) and that the equatorial part of the R2 current loop stays at r>6.6RE in the case of a dipole-like field geometry (BZ0>75 nT at 6.6RE prior to the onset), but it is located at r<6.6RE in the case of a stretched magnetic field configuration (with BZ0<60 nT). Since the ground midlatitude perturbations are sensitive to the combined effect of the R1 and R2 sense current loops with the net current roughly equal to I1-I2, the ratio I2/I1 becomes an important issue when attempting to monitor the current disruption intensity from ground observations.

Sergeev, V.; Nikolaev, A.; Tsyganenko, N.; Angelopoulos, V.; Runov, A.; Singer, H.; Yang, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013JA019629

injections; magnetotail; substorm current wedge; substorms

Fine structure of large-amplitude chorus wave packets

Whistler mode chorus waves in the outer Van Allen belt can have consequences for acceleration of relativistic electrons through wave-particle interactions. New multicomponent waveform measurements have been collected by the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science\textquoterights Waves instrument. We detect fine structure of chorus elements with peak instantaneous amplitudes of a few hundred picotesla but exceptionally reaching up to 3 nT, i.e., more than 1\% of the background magnetic field. The wave vector direction turns by a few tens of degrees within a single chorus element but also within its subpackets. Our analysis of a significant number of subpackets embedded in rising frequency elements shows that amplitudes of their peaks tend to decrease with frequency. The wave vector is quasi-parallel to the background magnetic field for large-amplitude subpackets, while it turns away from this direction when the amplitudes are weaker.

Santolik, O.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Bounds, S.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058889

Van Allen Probes

2013

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes



  1      2      3      4      5