Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 259 entries in the Bibliography.


Showing entries from 151 through 200


2016

Electron butterfly distribution modulation by magnetosonic waves

The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90\textdegree. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising magnetosonic wave intensity while an opposite transition occurs when wave intensity diminishes. We propose that bounce resonance with waves is the underlying process responsible for such rapid modulation, which is confirmed by our test particle simulation.

Maldonado, Armando; Chen, Lunjin; Claudepierre, Seth; Bortnik, Jacob; Thorne, Richard; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL068161

butterfly; electron; magnetosonic; Magnetosphere; Van Allen Probes; wave particle interaction

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance

Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90\textdegree, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.

Li, Jinxing; Ni, Binbin; Ma, Qianli; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Thorne, R.; Bortnik, J.; Chen, Lunjin; Li, Wen; Baker, Daniel; Kletzing, Craig; Kurth, William; Hospodarsky, George; Fennell, Joseph; Reeves, Geoffrey; Spence, Harlan; Funsten, Herbert; Summers, Danny;

Published by: Geophysical Research Letters      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016GL067853

butterfly distributions; energetic electrons; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022370

butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

Inward diffusion and loss of radiation belt protons

Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (\~103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor \~2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime \~120 years.

Selesnick, R.; Baker, D.; Jaynes, A.; Li, X.; Kanekal, S.; Hudson, M.; Kress, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2016

YEAR: 2016     DOI: 10.1002/2015JA022154

protons; radial diffusion; Radiation belt; Van Allen Probes

Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit

This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons\textemdashobserved by satellites with very different altitudes\textemdashwith correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward. Reliability of these predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.

Chen, Yue; Reeves, Geoffrey; Cunningham, Gregory; Redmon, Robert; Henderson, Michael;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015GL067481

forecast and nowcast; hundreds of keV precipitating electrons; LEO observations; Radiation belts; relativistic electrons; wave particle interactions

2015

Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements

A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sinnα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index and L-shell. The difference in electron PADs between the inner and outer belt is distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L-shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Besides being dependent on electron energy, magnetic activity and L-shell, the results show a clear dependence on MLT, with higher n values on the dayside.

Shi, Run; Summers, Danny; Ni, Binbin; Fennell, Joseph; Blake, Bernard; Spence, Harlan; Reeves, Geoffrey;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021724

pitch angle distributions; Van Allen Probes

Electron scattering by magnetosonic waves in the inner magnetosphere

We investigate the importance of electron scattering by magnetosonic waves in the Earth\textquoterights inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting time scale of electron energization during disturbed conditions (when AE* > 300 nT) is more than ten days. We perform a 2D simulation of the electron phase space density evolution due to magnetosonic wave scattering during disturbed conditions. Outside the plasmapause, the waves accelerate electrons with pitch angles between 50\textdegree and 70\textdegree, and form butterfly pitch angle distributions at energies from ~100 keV to a few MeV over a time scale of several days; whereas inside the plasmapause, the electron acceleration is very weak. Our study suggests that intense magnetosonic waves may cause the butterfly distribution of radiation belt electrons especially outside the plasmapause, but electron acceleration due to magnetosonic waves is generally not as effective as chorus wave acceleration.

Ma, Qianli; Li, Wen; Thorne, Richard; Bortnik, Jacob; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021992

Electron scattering; magnetosonic waves; Van Allen Probes; Van Allen Probes statistics

In-flight performance of the Van Allen Probes RF telecommunications system

The NASA Van Allen Probes mission (previously called the Radiation Belt Storm Probes) successfully launched on 30 August 2012. The twin spacecraft, designed, built, and operated by The Johns Hopkins University Applied Physics Laboratory (JHU/APL), has been successfully operating within Earth׳s radiation belts since then, returning critical science data revealing new insights into the physics of the radiation belts. Because of the extreme radiation environment, all spacecraft subsystems including the communications system had to make special accommodations to withstand the effects of the radiation. Each Van Allen Probes spacecraft׳s telecommunications system includes an S-band version of the Frontier Radio, a solid-state power amplifier, RF routing components, and dual low-gain antennas. This mission marks the first flight of the Frontier Radio, which is baselined for use in the upcoming Solar Probe Plus and Europa Clipper missions. This paper will present an overview of the as-built telecommunications system and its ground station interfaces discuss key communications flight hardware components, and then discuss in detail its activities and performance in-flight, including the launch and commissioning operations, performance enhancements since launch, and performance trending in flight. Pre-launch preparations at the APL 18-m ground station revealed occasional RF interference that could disrupt Van Allen Probe downlink. A monitoring system was installed to help mitigate some interference sources, and to characterize the residual environment and show that RF interference was not a mission risk. Post-launch commissioning activities were driven by the requirement to verify both spacecraft׳s communication systems over multiple ground networks, including JHU/APL׳s own 18-m ground station, the Universal Space Network, and TDRSS. Enhanced science data downlink volume was enabled by expanding the usable field of view of the spacecrafts׳ antennas once in-flight calibrations of the antenna patterns were completed, as well as reducing downlink link margins to a bare minimum when downlinking via APL׳s 18-m dish, where the CFDP (CCSDS File Delivery Protocol) is used to guarantee file delivery. Radiation drove some of the hardware design; the radios have experienced several predicted fault conditions at the predicted rates and have reacted autonomously as designed to minimize impact to the science downlink.

Srinivasan, Dipak; Adams, Norm; Wallis, Robert;

Published by: Acta Astronautica      Published on: 11/2015

YEAR: 2015     DOI: 10.1016/j.actaastro.2015.05.001

Van Allen Probes

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0\textendash5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3\textdegree equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0\textdegree; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2\textendash5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

Motoba, T.; Ohtani, S.; Anderson, B.; Korth, H.; Mitchell, D.; Lanzerotti, L.; Shiokawa, K.; Connors, M.; Kletzing, C.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/jgra.v120.1010.1002/2015JA021676

FACs; growth phase/onset arc; M-I coupling; Van Allen Probes

Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

Shue, Jih-Hong; Hsieh, Yi-Kai; W. Y. Tam, Sunny; Wang, Kaiti; Fu, Hui; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert;

Published by: Geophysical Research Letters      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015GL066107

Chorus; local time distribution; repetition period

Measurement of inner radiation belt electrons with kinetic energy above 1~MeV

Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992\textendash2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft, exponential energy spectra are consistent with extrapolation of lower energy measurements.

Selesnick, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021387

electrons; Inner zone; Radiation belt

\textquotedblleftTrunk-like\textquotedblright heavy ion structures observed by the Van Allen Probes

Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report \textquotedbllefttrunk-like\textquotedblright ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant\textquoterights trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6\textendash2.6, MLT = 9.1\textendash10.5, and MLAT = -2.4\textendash0.09\textdegree, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5\textendash0.7 keV, L = 3.6\textendash2.5, MLT = 9.1\textendash10.7, and MLAT = -2.4\textendash0.4\textdegree. Results from backward ion drift path tracings indicate that the trunks are likely due to 1) a gap in the nightside ion source or 2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.

Zhang, J.-C.; Kistler, L.; Spence, H.; Wolf, R.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.; Niehof, J.; MacDonald, E.; Friedel, R.; Ferradas, C.; Luo, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021822

inner magnetosphere; ion injection; Ion structure; magnetic cloud; magnetic storm; Van Allen Probes

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmaspheric hiss wave intensity. The technique is validated by analyzing the conjunctions between the POES spacecraft and the Van Allen Probes from September 2012 to June 2014. The technique performs well for moderate-to-strong hiss activity (>=30 pT) with sufficiently high electron fluxes. The main source of these limitations is the number of counts of energetic electrons measured by the POES spacecraft capable of resonating with hiss waves. For moderate-to-strong hiss events, the results show that the wave amplitudes from the EMFISIS instruments onboard the Van Allen Probes are well reproduced by the POES technique, which provides more consistent estimates than the parameterized statistical hiss wave model based on CRRES data.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021148

Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmaspheric hiss wave intensity. The technique is validated by analyzing the conjunctions between the POES spacecraft and the Van Allen Probes from September 2012 to June 2014. The technique performs well for moderate-to-strong hiss activity (>=30 pT) with sufficiently high electron fluxes. The main source of these limitations is the number of counts of energetic electrons measured by the POES spacecraft capable of resonating with hiss waves. For moderate-to-strong hiss events, the results show that the wave amplitudes from the EMFISIS instruments onboard the Van Allen Probes are well reproduced by the POES technique, which provides more consistent estimates than the parameterized statistical hiss wave model based on CRRES data.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021148

Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model

A novel data assimilation technique for the plasmasphere

We present a novel technique for imaging and data assimilation of the topside ionosphere and plasmasphere. The methodology is based upon the 3 dimensional variational technique (3DVAR), where an empirical background model is utilized. However, to prevent non-physical vertical variation in density estimates, we devise statistical methods to enforce a roughness penalty in the traditional 3DVAR optimization. The upward looking total electron content (TEC) observations from the Global Positioning System (GPS) receiver onboard Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites are utilized in the assimilation algorithm. The estimation results show reasonable agreement with in-situ density measurements of Defense Meteorological Satellite Program satellites and Van Allen Probes derived densities during geomagnetically quiet and severe storm-time conditions, respectively. These preliminary results demonstrate great potential for the use of GPS TEC measurements from low-earth-orbit (LEO) satellites in monitoring and studying the morphology and dynamics of large-scale structures of the electron density in the topside ionosphere and plasmasphere.

Nikoukar, Romina; Bust, Gary; Murr, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021455

GPS Techniques; Plasmasphere Data assimilation; Plasmasphere Imaging; Regularization

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40\textdegree for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90\textdegree remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to \textquotedbllefttop-hat.\textquotedblright Overall, H+-band and He+-band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1\textendash2 MeV. In contrast, the presence of O+-band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5\textendash10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics.

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40\textdegree for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90\textdegree remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to \textquotedbllefttop-hat.\textquotedblright Overall, H+-band and He+-band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1\textendash2 MeV. In contrast, the presence of O+-band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5\textendash10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics.

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

Li, W.; Thorne, R.; Bortnik, J.; Baker, D.; Reeves, G.; Kanekal, S.; Spence, H.; Green, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065342

Chorus wave; Electron acceleration; solar wind conditions; Van Allen Probes

Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations

We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2\textendash6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0\textendash4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes, the time interval between quasiperiodic elements decreased from 6 min to 3 min. We find one-to-one correspondence between the quasiperiodic elements detected by Van Allen Probe-A and on the ground, which indicates the temporal nature of the observed variation in the time interval between quasiperiodic elements. Multiсomponent measurements of the wave electric and magnetic fields by the Van Allen Probe-A show that the quasiperiodic emissions were almost circularly right-hand polarized whistler mode waves and had predominantly small (below 30\textdegree) wave vector angles with respect to the magnetic field. In the probable source region of these signals (L about 4), we observed synchronous variations of electron distribution function at energies of 10\textendash20 keV and the quasiperiodic elements. In the pause between the quasiperiodic elements pitch angle distribution of these electrons had a maximum near 90\textdegree, while they become more isotropic during the development of quasiperiodic elements. The parallel energies of the electrons for which the data suggest direct evidence of the wave-particle interactions is in a reasonable agreement with the estimated cyclotron resonance energy for the observed waves.

Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/grl.v42.1510.1002/2015GL064911

energetic electrons; quasiperiodic emissions; Van Allen Probes; VLF waves

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth; and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. If any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

Dense plasma and Kelvin-Helmholtz waves at Earth\textquoterights dayside magnetopause

Spacecraft observations of boundary waves at the dayside terrestrial magnetopause and their ground-based signatures are presented. Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measured boundary waves at the magnetopause while ground-based HF radar measured corresponding signatures in the ionosphere indicating a large-scale response and tailward propagating waves. The properties of the oscillations are consistent with linear phase Kelvin-Helmholtz waves along the magnetopause boundary. During this time period multiple THEMIS spacecraft also measured a plasmaspheric plume contacting the local magnetopause and mass loading the boundary. Previous work has demonstrated that increasing the density at the magnetopause can lower the efficiency of reconnection. Extending this further, present observations suggest that a plume can modulate instability processes such as the Kelvin-Helmholtz instability and allow them to form closer to the subsolar point along the magnetopause than without a plume. The current THEMIS observations from 21 September 2010 are consistent with a theory which predicts that increasing the density at the boundary will lower the Kelvin-Helmholtz threshold and allow waves to form for a lower velocity shear.

Walsh, B.; Thomas, E.; Hwang, K.-J.; Baker, J.; Ruohoniemi, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021014

Kelvin-Helmholtz; magnetopause

Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons

Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified yet. Here, we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1 , 2, and 3 ) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler-mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude \~A and normalized wave number inline image. The threshold for higher harmonic resonance is more strict, favoring higher \~A and inline image and the change in equatorial pitch angle is strongly controlled by inline image. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasmadensity, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90o.

Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard; Li, Jinxing; Dai, Lei; Zhan, Xiaoya;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021174

bounce resonance; equatorioal noise; magnetosonic waves; nonlinear; Radiation belt; wave particle interaction

Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics

Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss using the new statistical frequency spectrum and the previously adopted Gaussian spectrum and find that the differences are up to a factor of ~5 and are dependent on energy and L shell. Moreover, the new statistical hiss wave frequency spectrum including wave power below 100 Hz leads to increased pitch angle scattering rates by a factor of ~1.5 for electrons above ~100 keV at L~5, although their effect is negligible at L <= 3. Consequently, we suggest that the new realistic hiss wave frequency spectrum should be incorporated into future modeling of radiation belt electron dynamics.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021048

hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes

Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics

Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss using the new statistical frequency spectrum and the previously adopted Gaussian spectrum and find that the differences are up to a factor of ~5 and are dependent on energy and L shell. Moreover, the new statistical hiss wave frequency spectrum including wave power below 100 Hz leads to increased pitch angle scattering rates by a factor of ~1.5 for electrons above ~100 keV at L~5, although their effect is negligible at L <= 3. Consequently, we suggest that the new realistic hiss wave frequency spectrum should be incorporated into future modeling of radiation belt electron dynamics.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021048

hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90\textdegree pitch angle with n-values of 2\textendash3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from EMIC waves scattering. During quiet periods, n-values generally evolve to become small, i.e., 0\textendash1. The slow and long-term decays of the ultra-relativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell dependent decay timescales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay timescales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss induced pitch angle scattering and inward radial diffusion. As L shell increases to L ~ 3.5, a narrow region exists (with a width of ~0.5 L) where the observed ultra-relativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinn α function fitting and the estimate of decay timescale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultra-relativistic electrons and to assess their relative contributions.

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90\textdegree pitch angle with n-values of 2\textendash3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from EMIC waves scattering. During quiet periods, n-values generally evolve to become small, i.e., 0\textendash1. The slow and long-term decays of the ultra-relativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell dependent decay timescales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay timescales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss induced pitch angle scattering and inward radial diffusion. As L shell increases to L ~ 3.5, a narrow region exists (with a width of ~0.5 L) where the observed ultra-relativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinn α function fitting and the estimate of decay timescale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultra-relativistic electrons and to assess their relative contributions.

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts

We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west and those within the dawn cell being turned toward the east. The possibility that the SAPS-region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

Lyons, L.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M.; Chen, S.; Hampton, D.; Bristow, W.; Ruohoniemi, J.; Nishitani, N.; Donovan, E.; Angelopoulos, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021023

aurora; convection; Flow bursts; plasma sheet; SAPS; streamers

Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions

Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches\textquoteright evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetopause reconnection, as indicated by in-situ THEMIS observations. Convection led to the patches entering the polar cap and being transported antisunward, whilst being continuously monitored by the globally distributed arrays of GPS receivers and SuperDARN radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Troms\o and EISCAT Troms\o UHF Radar. After exiting the polar cap, the patches broke up into a number of plasma blobs, and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about three hours.

Zhang, Q.; Lockwood, M.; Foster, J.; Zhang, S.; Zhang, B.; McCrea, I.; Moen, J.; Lester, M.; Ruohoniemi, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021172

Dungey convection cycle; EISCAT radar; GPS TEC; polar cap patches

Equatorial noise emissions with quasiperiodic modulation of wave intensity

Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5\% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46\% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

emec, F.; Santolik, O.; a, Hrb\; Pickett, J.; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020816

equatorial noise; magnetosonic waves; quasiperiodic modulation

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

High-energy radiation belt electrons from CRAND

A calculation of the inner radiation belt electron source from cosmic ray albedo neutron decay (CRAND) is described. High-energy electrons are included by Lorentz-transforming the β decay spectrum from the neutron rest frame to the Earth\textquoterights rest frame and combining with the known high-energy albedo neutron energy spectrum. Balancing the electron source with energy loss to atmospheric neutral atoms and plasma, and with a decay lifetime representative of plasma wave scattering, then provides an estimate of trapped electron intensity. It is well below measured values for low energies, confirming that CRAND is not a significant source of those trapped electrons. For kinetic energies above the maximum β decay energy (E > 0.8 MeV) a power law energy spectrum \~E-4 is predicted. For L = 1.5 and inline image MeV the computed omnidirectional trapped electron intensity exceeds an extrapolation of the measured low-energy exponential energy spectrum.

Selesnick, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020963

inner radiation; electron source from cosmic ray albedo neutron decay

Intensities and spatiotemporal variability of equatorial noise emissions observed by the Cluster spacecraft

Equatorial noise (EN) emissions are electromagnetic waves observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. We present the analysis of 2229 EN events identified in the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment data of the Cluster spacecraft during the years 2001\textendash2010. EN emissions are distinguished using the polarization analysis, and their intensity is determined based on the evaluation of the Poynting flux rather than on the evaluation of only the electric/magnetic field intensity. The intensity of EN events is analyzed as a function of the frequency, the position of the spacecraft inside/outside the plasmasphere, magnetic local time, and the geomagnetic activity. The emissions have higher frequencies and are more intense in the plasma trough than in the plasmasphere. EN events observed in the plasma trough are most intense close to the local noon, while EN events observed in the plasmasphere are nearly independent on magnetic local time (MLT). The intensity of EN events is enhanced during disturbed periods, both inside the plasmasphere and in the plasma trough. Observations of the same events by several Cluster spacecraft allow us to estimate their spatiotemporal variability. EN emissions observed in the plasmasphere do not change on the analyzed spatial scales (ΔMLT<0.2h, Δr<0.2 RE), but they change significantly on time scales of about an hour. The same appears to be the case also for EN events observed in the plasma trough, although the plasma trough dependencies are less clear.

emec, F.; Santolik, O.; a, Hrb\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020814

equatorial noise; magnetosonic waves

The global context of the 14 November, 2012 storm event

From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause ~20\textendash30 min prior to the sequential Van Allen Probes observations. Ground-based magnetograms and all sky images demonstrate repeatable features in conjunction with the dropouts. We combine the various in-situ and ground-based measurements to define and understand the global spatiotemporal features associated with the dropouts observed by the Van Allen Probes. We discuss various proposed hypotheses for the mechanism that plausibly caused this storm-time dropout event as well as formulate a new hypothesis that explains the combined in-situ and ground-based observations: the earthward motion of magnetic flux ropes containing lobe plasmas that form along an extended magnetotail reconnection line in the near-Earth plasma sheet.

Hwang, K.-J.; Sibeck, D.; Fok, M.-C.; Zheng, Y.; Nishimura, Y.; Lee, J.-J.; Glocer, A.; Partamies, N.; Singer, H.; Reeves, G.; Mitchell, D.; Kletzing, C.; Onsager, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020826

Van Allen Probes

Modeling inward diffusion and slow decay of energetic electrons in the Earth\textquoterights outer radiation belt

A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the essential features of the observed electron flux evolution. The decay timescales and the pitch angle distributions in our simulation are consistent with the Van Allen Probes observations over multiple energy channels. Our study suggests that the quiet-time energetic electron dynamics are effectively controlled by inward radial diffusion and pitch angle scattering due to a combination of plasmaspheric hiss and EMIC waves in the Earth\textquoterights radiation belts.

Ma, Q.; Li, W.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014GL062977

pitch angle scattering; radiation belts modeling; Van Allen Probes; Van Allen Probes observations

Modeling sub-auroral polarization streams (SAPS) during the March 17, 2013 storm

The sub-auroral polarization streams (SAPS) are one of the most important features in representing magnetosphere-ionosphere coupling processes. In this study, we use a state-of-the-art modeling framework that couples an inner magnetospheric ring current model RAM-SCB with a global MHD model BATS-R-US and an ionospheric potential solver to study the SAPS that occurred during the March 17, 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the mid-latitude regions. Results show that the model captures the SAPS at sub-auroral latitudes, where Region-2 field-aligned currents (FACs) flow down to the ionosphere and the conductance is lower than in the higher-latitude auroral zone. Comparisons to observations such as FACs observed by AMPERE, cross-track ion drift from DMSP, and in-situ electric field observations from the Van Allen Probes indicate that the model generally reproduces the global dynamics of the Region-2 FACs, the position of SAPS along the DMSP, and the location of the SAPS electric field around L of 3.0 in the inner magnetosphere near the equator. While the model demonstrates double westward flow channels in the dusk sector (the higher-latitude auroral convection and the sub-auroral SAPS) and captures the mechanism of the SAPS, the comparison with ion drifts along DMSP trajectories shows an underestimate of the magnitude of the SAPS and the sensitivity to the specific location and time. The comparison of the SAPS electric field with that measured from the Van Allen Probes shows that the simulated SAPS electric field penetrates deeper than in reality, implying that the shielding from the Region-2 FACs in the model is not well represented. Possible solutions in future studies to improve the modeling capability include implementing a self-consistent ionospheric conductivity module from particle precipitation, coupling with the thermosphere-ionosphere chemical processes, and connecting the ionosphere with the inner magnetosphere by the stronger Region-2 FACs calculated in the inner magnetosphere model.

Yu, Yiqun; Jordanova, Vania; Zou, Shasha; Heelis, Roderick; Ruohoniemi, Mike; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020371

sub-auroral polarization streams; Van Allen Probes

Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.

Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within ten minutes, with different dipolarization signatures and duration. The first one is a dispersionless, short timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations, and in-situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

Gkioulidou, Matina; Ohtani, S.; Mitchell, D.; Ukhorskiy, A.; Reeves, G.; Turner, D.; Gjerloev, J.; e, Nos\; Koga, K.; Rodriguez, J.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020872

inner magnetosphere; Van Allen Probes

Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission

We report results of a systematic analysis of equatorial noise (EN) emissions which are also known as fast magnetosonic waves. EN occurs in the vicinity of the geomagnetic equator at frequencies between the local proton cyclotron frequency and the lower hybrid frequency. Our analysis is based on the data collected by the Spatio-Temporal Analysis of Field Fluctuations\textendashSpectrum Analyzer instruments on board the four Cluster spacecraft. The data set covers the period from January 2001 to December 2010. We have developed selection criteria for the visual identification of these emissions, and we have compiled a list of more than 2000 events identified during the analyzed time period. The evolution of the Cluster orbit enables us to investigate a large range of McIlwain\textquoterights parameter from about L\~1.1 to L\~10. We demonstrate that EN can occur at almost all analyzed L shells. However, the occurrence rate is very low (<6\%) at L shells below L=2.5 and above L=8.5. EN mostly occurs between L=3 and L=5.5, and within 7\textdegree of the geomagnetic equator, reaching 40\% occurrence rate. This rate further increases to more than 60\% under geomagnetically disturbed conditions. Analysis of occurrence rates as a function of magnetic local time (MLT) shows strong variations outside of the plasmasphere (with a peak around 15 MLT), while the occurrence rate inside the plasmasphere is almost independent on MLT. This is consistent with the hypothesis that EN is generated in the afternoon sector of the plasmapause region and propagates both inward and outward.

a, Hrb\; Santolik, O.; emec, F.; a, Mac\; Cornilleau-Wehrlin, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/2014JA020268

equatorial noise; magnetosonic waves; plasmasphere; Radiation belts

Ecohydrologic role of solar radiation on landscape evolution

Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, Homero; Vivoni, Enrique; Bras, Rafael;

Published by: Water Resources Research      Published on: 02/2015

YEAR: 2015     DOI: 10.1002/wrcr.v51.210.1002/2014WR016169

catchment evolution; ecohydrology; geomorphology; landscape evolution; solar radiation; vegetation dynamics

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support that chorus from large L-shells, where it was previously considered unable to propagate into the plasmasphere, can in fact be the source of hiss.

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

2014

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Electron lifetimes from narrowband wave-particle interactions within the plasmasphere

This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2\textendashθ, where α0 is the equatorial pitch angle. Lifetimes are computed for L shell values in the range [1.5, 3.5] and energies, E, in the range [0.1, 6] MeV as a function of frequency and wave normal angle. The maximal pitch angle associated with a given lifetime is also given, revealing the frequencies that are able to scatter nearly equatorial pitch angle particles. The lifetimes are relatively independent of frequency and wave normal angle after taking into consideration the scaling law, with a weak dependence on wave normal angle up to 60\textendash70\textdegree, increasing to infinity as the wave normal angle approaches the resonance cone. We identify regions in the (L, E) plane in which a single wave type (hiss, VLF transmitters, or lightning-generated waves) is dominant relative to the others. We find that VLF waves dominate the lifetime for 0.2\textendash0.4 MeV at L ~ 2 and for 0.5\textendash0.8 MeV at L ~ 1.5, while hiss dominates the lifetime for 2\textendash3 MeV at L = 3\textendash3.5. The influence of lightning-generated waves is always mixed with the other two and cannot be easily differentiated. Limitations of the method for addressing effects due to restricted latitude or pitch angle domains are also discussed. Finally, for each (L, E) we search for the minimum lifetime and find that the optimal frequency that produces this lifetime increases as L diminishes. Restricting the search to very oblique waves, which could be emitted during the Demonstration and Science Experiments satellite mission, we find that the optimal frequency is always close to 0.16Ωce.

Ripoll, J.-F.; Albert, J.; Cunningham, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020217

DSX; electron; narrowband; plasmasphere; wave-particle interactions

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes



  1      2      3      4      5      6