Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 43 entries in the Bibliography.


Showing entries from 1 through 43


2021

Simultaneous pulsating aurora and microburst observations with ground-based fast auroral imagers and CubeSat FIREBIRD-II

Abstract We report on the relationship between a pulsating aurora and a relativistic electron microburst using simultaneous observations of ground-based fast auroral imagers with the FIREBIRD-� � CubeSat for the first time. We conducted a detailed analysis of an event on October 8, 2018 and found that the occurrence of the pulsating aurora with internal modulations corresponds to the flux enhancement of electrons with energy ranging from ∼220 keV to >1 MeV detected with Flight Unit 4, one of FIREBIRD’s CubeSat, with a time delay of ∼585 ms. Combining of this time delay result and time of flight model, we suggest that the theory the pulsating aurora and the microburst occur due to the chorus waves at different latitudes along the same field-line by Miyoshi et al. (2020).

Kawamura, Miki; Sakanoi, Takeshi; Fukizawa, Mizuki; Miyoshi, Yoshizumi; Hosokawa, Keisuke; Tsuchiya, Fuminori; Katoh, Yuto; Ogawa, Yasunobu; Asamura, Kazushi; Saito, Shinji; Spence, Harlan; Johnson, Arlo; Oyama, Shin’ichiro; Brändström, Urban;

Published by: Geophysical Research Letters      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL094494

pulsating aurora; Microbursts; chorus waves; Van Allen Probes

Field-Aligned Electron Density Distribution of the Inner Magnetosphere Inferred from Coordinated Observations of Arase and Van Allen Probes

Plain Language Summary The plasmasphere is the region filled with cold, dense ionized gas in geospace. The ionized gas mainly consists in protons, helium ions, oxygen ions and electrons, which come from Earth’s ionosphere and fill in magnetic flux tubes. The density distribution of the ionized gas along the flux tube provides important information to understand how the ions and electrons have been supplied from the ionosphere. Many satellites fly in the equatorial plane, hence, do not provide information on the electron density along the field. The RBSP and the Arase satellites have different inclinations and sometimes they simultaneously fly near the equator and off the equator on the same magnetic field line. Using electron densities observed by these satellites during the 7 Sep 2017 storm, we successfully estimated the electron density distribution along of the field lines inside the partially refilled plasmasphere, outside of the plasmasphere and in the tail-like structure called a plume.

Obana, Yuki; Miyashita, Yukinaga; Maruyama, Naomi; Shinbori, Atsuki; Nosé, Masahito; Shoji, Masafumi; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Kasahara, Yoshiya; Miyoshi, Yoshizumi; Shinohara, Iku; Kurth, William; Smith, Charles; MacDowall, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029073

plasmasphere; inner magnetosphere; Arase satellite; Van Allen Probes satellite; simultaneous observation; Geomagnetic storm; Van Allen Probes

Evening side EMIC waves and related proton precipitation induced by a substorm

Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The proton flux enhancement at every spacecraft coincided with the EMIC wave enhancement or appearance. This data shows the excitation of EMIC waves first inside an expanding substorm wedge and then by a drifting cloud of injected protons. Low-orbiting NOAA/POES and MetOp satellites observed precipitation of energetic protons nearly conjugate with the EMIC wave observations in the magnetosphere. The proton pitch-angle diffusion coefficient and the strong diffusion regime index were calculated based on the observed wave, plasma and magnetic field parameters. The diffusion coefficient reaches a maximum at energies corresponding well to the energy range of the observed proton precipitation. The diffusion coefficient values indicated the strong diffusion regime, in agreement with the equality of the trapped and precipitating proton flux at the low-Earth orbit. The growth rate calculations based on the plasma and magnetic field data from both VAP and Arase spacecraft indicated that the detected EMIC waves could be generated in the region of their observation or in its close vicinity.

Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029091

Van Allen Probes

Evening side EMIC waves and related proton precipitation induced by a substorm

Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The proton flux enhancement at every spacecraft coincided with the EMIC wave enhancement or appearance. This data shows the excitation of EMIC waves first inside an expanding substorm wedge and then by a drifting cloud of injected protons. Low-orbiting NOAA/POES and MetOp satellites observed precipitation of energetic protons nearly conjugate with the EMIC wave observations in the magnetosphere. The proton pitch-angle diffusion coefficient and the strong diffusion regime index were calculated based on the observed wave, plasma and magnetic field parameters. The diffusion coefficient reaches a maximum at energies corresponding well to the energy range of the observed proton precipitation. The diffusion coefficient values indicated the strong diffusion regime, in agreement with the equality of the trapped and precipitating proton flux at the low-Earth orbit. The growth rate calculations based on the plasma and magnetic field data from both VAP and Arase spacecraft indicated that the detected EMIC waves could be generated in the region of their observation or in its close vicinity.

Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029091

Van Allen Probes

The characteristics of EMIC waves in the magnetosphere based on the Van Allen Probes and Arase observations

Abstract We performed a comprehensive statistical study of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes and Exploration of energization and Radiation in Geospace satellite (ERG/Arase). From 2017 to 2018, we identified and categorized EMIC wave events with respect to wavebands (H+ and He+ EMIC waves) and relative locations from the plasmasphere (inside and outside the plasmasphere). We found that H+ EMIC waves in the morning sector at L>8 are predominantly observed with a mixture of linear and right-handed polarity and higher wave normal angles during quiet geomagnetic conditions. Both H+ and He+ EMIC waves observed in the noon sector at L∼4-6 have left-handed polarity and lower wave normal angles at |MLAT|< 20˚ during the recovery phase of a storm with moderate solar wind pressure. In the afternoon sector (12-18 MLT), He+ EMIC waves are dominantly observed with strongly enhanced wave power at L∼6-8 during the storm main phase, while in the dusk sector (17-21 MLT) they have lower wave normal angles with linear polarity at L>8 during geomagnetic quiet conditions. Based on distinct characteristics at different EMIC wave occurrence regions, we suggest that EMIC waves in the magnetosphere can be generated by different free energy sources. Possible sources include the freshly injected particles from the plasma sheet, adiabatic heating by dayside magnetospheric compressions, suprathermal proton heating by magnetosonic waves, and off-equatorial sources. This article is protected by copyright. All rights reserved.

Jun, C.-W; Miyoshi, Y.; Kurita, S.; Yue, C.; Bortnik, J.; Lyons, L.; Nakamura, S.; Shoji, M.; Imajo, S.; Kletzing, C.; Kasahara, Y.; Kasaba, Y.; Matsuda, S.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029001

Spatial distributions of EMIC waves; RBSP and Arase observations; EMIC wave properties; EMIC wave dependence on geomagnetic condition; Van Allen Probes

A Concise Empirical Formula for the Field-aligned Distribution of Auroral Kilometeric Radiation based on Arase satellite and Van Allen Probes

Abstract Auroral kilometric radiations (AKR) are strong radio emission phenomena, and can prduce significant acceleration or scattering of radiation belt electrons. The variation of AKR wave amplitude with the latitude (λ) has not been reported so far owing to lack of measurements. Here, using observations of the Arase satellite and Van Allen Probes from 23 March 2017 to 31 July 2019, we present the first statistical study on the AKR electric field amplitude (Et) in the radiation belts for |λ| = 0° − 40° and L-shell L = 3.0−6.2. Results (totally 14,770 samples) show that Et can be described by a concise formula: Et(λ) = E0  exp(ξ sin |λ|), decreasing with decreasing latitude. Fitting parameters E0 and ξ are limited in the ranges: E0 = 0.054−0.340 mV/m and ξ = 3.0−4.2. Wave amplitudes are greater (smaller) under intense (weak) geomagnetic conditions. This study helps to better quantify the gyroresonance between AKR and radiation belt electrons.

Zhang, Sai; Liu, Si; Li, Wentao; He, Yihua; Yang, Qiwu; Xiao, Fuliang; Kumamoto, Atsushi; Miyoshi, Yoshizumi; Nakamura, Yosuke; Tsuchiya, Fuminori; Kasahara, Yoshiya; Shinohara, Iku;

Published by: Geophysical Research Letters      Published on: 04/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL092805

AKR; wave amplitude; geomagnetic latitude; Radiation belt; field-aligned; Van Allen Probes

Multi-event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere during Non-storm-time Substorms

Abstract Stable auroral red (SAR) arcs are optical events with dominant 630.0-nm emission caused by low-energy electron heat flux into the topside ionosphere from the inner magnetosphere. SAR arcs are observed at subauroral latitudes and often occur during the recovery phase of magnetic storms and substorms. Past studies concluded that these low-energy electrons were generated in the spatial overlap region between the outer plasmasphere and ring-current ions and suggested that Coulomb collisions between plasmaspheric electrons and ring-current ions are more feasible for the SAR-arc generation mechanism rather than Landau damping by electromagnetic ion cyclotron waves or kinetic Alfvén waves. This paper studies three separate SAR-arc events with conjunctions, using all-sky imagers and inner magnetospheric satellites (Arase and RBSP) during non-storm-time substorms on 19 December 2012 (event 1), 17 January 2015 (event 2), and 4 November 2019 (event 3). We evaluated for the first time the heat flux via Coulomb collision using full-energy-range ion data obtained by the satellites. The electron heat fluxes due to Coulomb collisions reached ∼109 eV/cm2/s for events 1 and 2, indicating that Coulomb collisions could have caused the SAR arcs. RBSP-A also observed local enhancements of 7–20-mHz electromagnetic wave power above the SAR arc in event 2. The heat flux for the freshly-detached SAR arc in event 3 reached ∼108 eV/cm2/s, which is insufficient to have caused the SAR arc. In event 3, local flux enhancement of electrons (<200 eV) and various electromagnetic waves were observed, these are likely to have caused the freshly-detached SAR arc.

Inaba, Yudai; Shiokawa, Kazuo; Oyama, Shin-Ichiro; Otsuka, Yuichi; Connors, Martin; Schofield, Ian; Miyoshi, Yoshizumi; Imajo, Shun; Shinbori, Atsuki; Gololobov, Artem; Kazama, Yoichi; Wang, Shiang-Yu; W. Y. Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Asamura, Kazushi; Yokota, Shoichiro; Kasahara, Satoshi; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako; Kasahara, Yoshiya; Kumamoto, Atsushi; Matsuda, Shoya; Kasaba, Yasumasa; Tsuchiya, Fuminori; Shoji, Masafumi; Kitahara, Masahiro; Nakamura, Satoko; Shinohara, Iku; Spence, Harlan; Reeves, Geoff; MacDowall, Robert; Smith, Charles; Wygant, John; Bonnell, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029081

SAR arc; Arase; RBSP; ring current; Non-storm-time substorm; Plasmapause; Van Allen Probes

Investigation of small-scale electron density irregularities observed by the Arase and Van Allen Probes satellites inside and outside the plasmasphere

AbstractIn-situ electron density profiles obtained from Arase in the night magnetic local time (MLT) sector and from RBSP-B covering all MLTs are used to study the small-scale density irregularities present in the plasmasphere and near the plasmapause. Electron density perturbations with amplitudes > 10\% from background density and with time-scales less than 30-min are investigated here as the small-scale density irregularities. The statistical survey of the density irregularities is carried out using nearly two years of density data obtained from RBSP-B and four months of data from Arase satellites. The results show that density irregularities are present globally at all MLT sectors and L-shells both inside and outside the plasmapause, with a higher occurrence at L > 4. The occurrence of density irregularities is found to be higher during disturbed geomagnetic and interplanetary conditions. The case studies presented here revealed: 1) The plasmaspheric density irregularities observed during both quiet and disturbed conditions are found to co-exist with the hot plasma sheet population. 2) During quiet periods, the plasma waves in the whistler-mode frequency range are found to be modulated by the small-scale density irregularities, with density depletions coinciding well with the decrease in whistler intensity. Our observations suggest that different source mechanisms are responsible for the generation of density structures at different MLTs and geomagnetic conditions.This article is protected by copyright. All rights reserved.

Thomas, Neethal; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Shinohara, Iku; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuoka, Ayako; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomo; Asamura, Kazushi; Wang, Shiang-Yu; Kazama, Yoichi; Tam, Sunny; Chang, Tzu-Fang; Wang, Bo-Jhou; Wygant, John; Breneman, Aaron; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA027917

Electron density; small-scale density irregularities; plasmasphere; inner magnetosphere; Van Allen Probes; Arase

Observations of Particle Loss due to Injection-Associated EMIC Waves

AbstractWe report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground-based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density (PSD) profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy-dependent relativistic electron dropout over a limited L-shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave-induced relativistic electron loss in the radiation belt.

Kim, Hyomin; Schiller, Quintin; Engebretson, Mark; Noh, Sungjun; Kuzichev, Ilya; Lanzerotti, Louis; Gerrard, Andrew; Kim, Khan-Hyuk; Lessard, Marc; Spence, Harlan; Lee, Dae-Young; Matzka, Jürgen; Fromm, Tanja;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028503

EMIC waves; ring current; Radiation belt; wave particle interaction; injection; Particle precipitation; Van Allen Probes

2020

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativistic electron energization, electron distributions are most anisotropic within around a day of Dstmin and become more isotropic in the following week. Also, each consecutively higher energy channel is associated with higher anisotropy after storm main phase. Changes in the pitch angle index are reflected in each energy channel; when 1.8 MeV electron pitch angle distributions increase (or decrease) in pitch angle index, so do the other energy channels. We show that the peak anisotropies differ between CME- and CIR- driven storms and measure the relaxation rate as the anisotropy falls after the storm. The isotropization rate in pitch angle index for CME-driven storms is -0.15±0.02 day−1 at 1.8 MeV, -0.30±0.01 day−1 at 3.4 MeV, and -0.39±0.02 day−1 at 5.2 MeV. For CIR-driven storms, the isotropization rates are -0.10±0.01 day−1 for 1.8 MeV, -0.13±0.02 day−1 for 3.4 MeV, and -0.11±0.02 day−1 for 5.2 MeV. This study shows that there is a global coherence across energies and that storm type may play a role in the evolution of electron pitch angle distributions.

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the measured phase space density of energetic electrons. We demonstrate that even parallel wave propagation and proper (downward) Poynting flux direction are not sufficient for claiming observations to be in the source region. Agreement between the growth rate and emission bands was obtained for a restricted part of Van Allen Probe A trajectory corresponding to localized enhancement of plasma density with scale of 700 km. We employ spacecraft density data to build a model plasma profile and to calculate ray trajectories from the point of wave detection in space to the ionosphere and examine the possibility of their propagation toward the ground. For the considered event, the wave could propagate toward the ground in the geomagnetic flux tube with enhanced plasma density, which ensured ducted propagation. The region of wave exit was confirmed by the analysis of wave propagation direction at the ground detection point.

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to urn:x-wiley:grl:media:grl60110:grl60110-math-0001 of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on: 01/2020

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy-dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron resonances, generated whistler-mode waves with globally drifting frequencies. These waves were able to propagate from the dawnside to the noonside, with the frequency-drifting feature retained. Approximately 5 hr of magnetic local time away from the source region in the dayside sector, the wave power was dissipated to of its original level.

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

Published by: Geophysical Research Letters      Published on:

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

2019

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

2018

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground-based observations constrained spatial-temporal variations of the EMIC wave activity during the loss event. Multi-satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantially decreased within a few tens of minutes where the EMIC waves were present. The present study provides an observational estimate of the loss time scale of MeV electrons by EMIC waves.

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

Published by: Geophysical Research Letters      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10\textendash07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed toward the dawn, being described more precisely as a crescent-shaped torus or a pinched torus.

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is \~20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high-latitude Pi2 waves because they were not detected on the ground near the magnetic field footprint of Arase. Overall, the toroidal wave event lasted more than 2 h and allowed us to use the wave frequency to estimate the plasma mass density at L = 6.1\textendash8.3. The mass density (in amu cm-3) is higher than the electron density (in cm-3) by a factor of \~6, which implies that 17\textendash33\% of the ions were O+.

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

Published by: Geophysical Research Letters      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

2017

Global observations of magnetospheric high- m poloidal waves during the 22 June 2015 magnetic storm

We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

Le, G.; Chi, P.; Strangeway, R.; Russell, C.; Slavin, J.; Takahashi, K.; Singer, H.; Anderson, B.; Bromund, K.; Fischer, D.; Kepko, E.; Magnes, W.; Nakamura, R.; Plaschke, F.; Torbert, R.;

Published by: Geophysical Research Letters      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2017GL073048

field line resonances; high-m poloidal waves; magnetic storm; magnetospheric multiscale mission; ULF waves; Van Allen Probes

Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13\textendash14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.

Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023093

CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes

Amplitude\textendashfrequency characteristics of ion\textendashcyclotron and whistler-mode waves from Van Allen Probes data

Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion\textendashcyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency\textendashtime characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particles, and their pitch-angle distribution on the wave generation. The ducted propagation of waves plays an important role in their generation during the given event. The chorus VLF emissions observed in this event cannot be explained by kinetic cyclotron instability, and their generation requires much sharper changes (\textquotedblleftsteps\textquotedblright) for velocity distributions than those measured by energetic particle detectors on Van Allen Probes satellites.

Lyubchich, A.; Demekhov, A.; Titova, E.; Yahnin, A.;

Published by: Geomagnetism and Aeronomy      Published on: 02/2017

YEAR: 2017     DOI: 10.1134/S001679321701008X

Van Allen Probes

2016

Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25\% of IP shocks are associated with prompt energization, and 14\% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

Schiller, Q.; Kanekal, S.; Jian, L.; Li, X.; Jones, A.; Baker, D.; Jaynes, A.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016GL071628

electrons; IP shocks; Radiation belts; Van Allen Probes

Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. These results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

Published by: Geophysical Research Letters      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

Trapped electrons in Earth\textquoterights outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

Kanekal, S.; Baker, D.; Fennell, J.; Jones, A.; Schiller, Q.; Richardson, I.; Li, X.; Turner, D.; Califf, S.; Claudepierre, S.; Wilson, L.; Jaynes, A.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022596

electron; energizaiton; IP shock; ultrarelativsti; Van Allen Probes

Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere

We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22\textendash23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. The spectral evolution manifests the characteristics of adiabatic acceleration and density increase of oxygen ions. Warm (0.1\textendash10 keV) oxygen measured by the Helium, Oxygen, Proton, and Electron (HOPE) instrument was enhanced prior to the storm mostly in magnetic field-aligned directions. The most reasonable scenario of this event is that warm oxygen ions that preexisted in the inner magnetosphere were picked up and adiabatically transported and accelerated by spatially localized, temporarily impulsive electric fields.

Keika, Kunihiro; Seki, Kanako; e, Masahito; Machida, Shinobu; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Turner, Drew; Spence, Harlan; Larsen, Brian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022384

adiabatic transport from the plasma sheet; oxygen ions of ionospheric origin; preconditions of magnetic storms; preexisting oxygen ions trapped in the inner magnetosphere; Van Allen Probes; Van Allen Probes RBSPICE observations

Pulsating proton aurora caused by rising tone Pc1 waves

We found rising tone emissions with a dispersion of \~1 Hz per several tens of seconds in the dynamic spectrum of a Pc1 geomagnetic pulsation (Pc1) observed on the ground. These Pc1 rising tones were successively observed over \~30 min from 0250 UT on 14 October 2006 by an induction magnetometer at Athabasca, Canada (54.7\textdegreeN, 246.7\textdegreeE, magnetic latitude 61.7\textdegreeN). Simultaneously, a Time History of Events and Macroscale Interactions during Substorms panchromatic (THEMIS) all-sky camera detected pulsations of an isolated proton aurora with a period of several tens of seconds, \~10\% variations in intensity, and fine structures of 3\textdegree in magnetic longitudes. The pulsations of the proton aurora close to the zenith of ATH have one-to-one correspondences with the Pc1 rising tones. This suggests that these rising tones scatter magnetospheric protons intermittently at the equatorial region. The radial motion of the magnetospheric source, of which the isolated proton aurora is a projection, can explain the central frequency increase of Pc1, but not the shorter period (tens of seconds) frequency increase of \~1 Hz in Pc1 rising tones. We suggest that EMIC-triggered emissions generate the frequency increase of Pc1 rising tones on the ground and that they also cause the Pc1 pearl structure, which has a similar characteristic time.

Nomura, R.; Shiokawa, K.; Omura, Y.; Ebihara, Y.; Miyoshi, Y.; Sakaguchi, K.; Otsuka, Y.; Connors, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015JA021681

EMIC-triggered waves; Pc1 waves; proton aurora

2015

Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models

The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary (GEO) and medium Earth orbit (MEO). To provide alerts of electron flux enhancements, sixteen prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omni-directional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES-15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For the central to outermost regions, at L≧4.8 and L≧5.6, the electron flux is predicted most accurately by including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best overall single parameter for predicting at 3≦L≦6, while for the GEO flux prediction, the KP index is better than Dst. A test calculation demonstrates that the model successfully predicts the timing and location of the flux maximum as much as 2 days in advance, and that the electron flux decreases faster with time at higher L values, both model features consistent with the actually observed behavior.

Sakaguchi, Kaori; Nagatsuma, Tsutomu; Reeves, Geoffrey; Spence, Harlan;

Published by: Space Weather      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015SW001254

outer radiation belt; Practical prediction model; Van Allen Probes

Observations of magnetospheric high-m poloidal waves by ST-5 satellites in low Earth orbit during geomagnetically quiet times

The poloidal waves with large azimuthal wavenumbers (m~100) in the magnetosphere are known to be generated by drift or drift bounce resonance with energetic ring current particles, and these waves may play a role in modulating the energetic particles in the inner magnetosphere. When examining the magnetic field data collected by the NASA ST-5 satellites in the low Earth orbit, Le et al. [2011] discovered many wave events with frequencies of 30\textendash200 mHz (in the Pc 2\textendash3 band), and they proposed that these waves should in fact be Doppler-shifted high-m poloidal waves in the magnetosphere with frequencies at only a few mHz (in the Pc 5 band). Using a new method that examines the differences in wave phase detected by the three ST-5 satellites, we confirm that the frequencies in the Earth frame for the poloidal waves observed are mainly between 3 and 5 mHz. Not only were poloidal waves observed frequently by ST-5 in the dayside magnetosphere, but they were also occasionally seen in the nightside when the satellites passed through the same L shells. In each wave event, the azimuthal wavenumber may change with L, but the wave frequency in the Earth frame remains the same. We also find that poloidal waves can last more than 9 hours during geomagnetically quiet conditions, suggesting that even a very weak ring current can supply enough energetic particles to excite poloidal waves.

Chi, P.; Le, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021145

drift Alfven ballooning mode; high-m waves; poloidal mode

Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave\textendashparticle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Troms\o VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Troms\o and the satellite observed rising tone emissions of the lower-band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave\textendashparticle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of sub-relativistic electrons and the pulsating aurora.

Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C.; Turunen, E.; Tsuchiya, F.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2015

YEAR: 2015     DOI: 10.1002/2014JA020690

EISCAT; pitch angle scattering; pulsating aurora; Van Allen Probes

Upper limit on the inner radiation belt MeV electron Intensity

No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope (REPT) on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about one order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

Li, X.; Selesnick, R.; Baker, D.; Jaynes, A.; Kanekal, S.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014JA020777

Van Allen Probes

2014

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Equivalent Circuit Model for the Electric Field Sensitivity of a Magnetic Search Coil of Space Plasma

Magnetic search coils (MSCs) are sensitive to both magnetic and electric fields, but detecting electric fields is unnecessary for magnetic observations of plasma waves. However, it is important to evaluate both sensitivities for different geometries and electrostatic shields to avoid electric field pickup. An equivalent circuit model for the electric field sensitivity of an MSC in a collisionless isotropic cold plasma is developed here using electrical coupling through a sheath capacitance. That sensitivity is defined by a relationship between the MSC impedance and the sheath capacitance. To confirm the validity of the circuit model, the sensitivity to an electric field is measured by imposing an external electric field using charged parallel metallic plates in laboratory experiments. The coupling capacitance between the MSC and the charged plates is equivalent to the sheath capacitance in a space plasma. The measured results show good agreement with an approximate expression deduced from the equivalent circuit model.

Ozaki, Mitsunori; Yagitani, Satoshi; Takahashi, Ken; Imachi, Tomohiko; Koji, Hiroki; Higashi, Ryoichi;

Published by: IEEE Sensors Journal      Published on: 10/2014

YEAR: 2014     DOI: 10.1109/JSEN.2014.2365495

electric field sensitivity; Magnetic search coils; sheath impedance; space plasmas

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

Ground-based ELF/VLF chorus observations at subauroral latitudes-VLF-CHAIN Campaign

We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17\textendash25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020161

Chorus; ELF/VLF; Radiation belts; subauroral latitudes; wave-particle interactions

Magnetospheric Multiscale Science Mission Profile and Operations

The Magnetospheric Multiscale (MMS) mission and operations are designed to provide the maximum reconnection science. The mission phases are chosen to investigate reconnection at the dayside magnetopause and in the magnetotail. At the dayside, the MMS orbits are chosen to maximize encounters with the magnetopause in regions where the probability of encountering the reconnection diffusion region is high. In the magnetotail, the orbits are chosen to maximize encounters with the neutral sheet, where reconnection is known to occur episodically. Although this targeting is limited by engineering constraints such as total available fuel, high science return orbits exist for launch dates over most of the year. The tetrahedral spacecraft formation has variable spacing to determine the optimum separations for the reconnection regions at the magnetopause and in the magnetotail. In the specific science regions of interest, the spacecraft are operated in a fast survey mode with continuous acquisition of burst mode data. Later, burst mode triggers and a ground-based scientist in the loop are used to determine the highest quality data to downlink for analysis. This operations scheme maximizes the science return for the mission. Space Science Reviews Space Science Reviews Look

Fuselier, S.; Lewis, W.; Schiff, C.; Ergun, R.; Burch, J.; Petrinec, S.; Trattner, K.;

Published by: Space Science Reviews      Published on: 09/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0087-x

Magnetic reconnection; Magnetospheric multiscale; Space mission design; Spacecraft orbits

A nonstorm time enhancement of relativistic electrons in the outer radiation belt

Despite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13\textendash14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes\textquoteright apogee, which suggest a very interesting scenario: wave-particle interactions causing a PSD peak at ~ L* = 5.5 from where the electrons are then rapidly transported radially inward. This letter demonstrates, for the first time in detail, that geomagnetic storms are not necessary for causing dramatic enhancements in the outer radiation belt.

Schiller, Quintin; Li, Xinlin; Blum, Lauren; Tu, Weichao; Turner, Drew; Blake, J.;

Published by: Geophysical Research Letters      Published on: 01/2014

YEAR: 2014     DOI: 10.1002/2013GL058485

Van Allen Probes

One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)

The Colorado Student Space Weather Experiment is a 3-unit (10cm \texttimes 10cm \texttimes 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 \texttimes 780 km, 65\textdegree orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program. The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On September 13, 2013, CSSWE completed one year of on-orbit operations. In this talk we will discuss the issues encountered with designing and operating a cubesat in orbit. Data from the mission will be presented and discussed in the larger context of ionospheric and magnetospheric physics.

Palo, Scott; Gerhardt, David; Li, Xinlin; Blum, Lauren; Schiller, Quintin; Kohnert, Rick;

Published by:       Published on: 01/2014

YEAR: 2014     DOI: 10.1109/USNC-URSI-NRSM.2014.6928087

artificial satellites; atmospheric measuring apparatus; Ionosphere; Magnetic Storms; Magnetosphere; Van Allen Probes

2013

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18\textendash19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial features of precipitation bands for the first time. We estimate the net electron loss due to the precipitation bands and find that ~20 such events could empty the entire outer belt. This study suggests that precipitation bands play a critical role in radiation belt losses.

Blum, L.; Schiller, Q.; Li, X.; Millan, R.; Halford, A.; Woodger, L.;

Published by: Geophysical Research Letters      Published on: 11/2013

YEAR: 2013     DOI: 10.1002/2013GL058546

CubeSats; precipitation; Radiation belts; Van Allen Probes

First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms

Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65\textdegree) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10\textdegree) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the atmosphere, a major radiation belt loss process. REPTile, a miniaturized version of REPT, measures the fraction of the total electron population that has small enough equatorial pitch angles to reach the altitude of CSSWE, 480 km \texttimes 780 km, thus measuring the precipitating population as well as the trapped and quasi-trapped populations. These newly available measurements provide an unprecedented opportunity to investigate the source, loss, and energization processes that are responsible for the dynamic behavior of outer radiation belt electrons. The focus of this paper will be on the characteristics of relativistic electrons measured by REPTile during the October 2012 storms; also included are long-term measurements from the Solar Anomalous and Magnetospheric Particle Explorer to put this study into context.

Li, X.; Schiller, Q.; Blum, L.; Califf, S.; Zhao, H.; Tu, W.; Turner, D.; Gerhardt, D.; Palo, S.; Kanekal, S.; Baker, D.; Fennell, J.; Blake, J.; Looper, M.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2013

YEAR: 2013     DOI: 10.1002/2013JA019342

RBSP; Van Allen Probes

1988

Simultaneous Radial and Pitch Angle Diffusion in the Outer Electron Radiation Belt

A solution of the bimodal (radial and pitch angle) diffusion equation for the radiation belts is developed with special regard for the requirements of satellite radiation belt data analysis. In this paper, we use this solution to test the bimodal theory of outer electron belt diffusion by confronting it with satellite data. Satellite observations, usually over finite volumes of (L, t) space, are seldom sufficient in space-time duration to cover the relaxation to equilibrium of the entire radiation belt. Since time scales of continuous data coverage are often comparable to that of radiation belt disturbances, it is therefore inappropriate to apply impulsive semi-infinite time response solutions of diffusion theory to interpret data from a finite window of (L, t) space. Observational limitations indicate that appropriate solutions for the interpretation of satellite data are general solutions for a finite-volume boundary value problem in bimodal diffusion. Here we test such a solution as the prime candidate for comprehensive radiation belt dynamic modeling by applying the solution and developing a method of analysis to radiation belt electron data obtained by the SCATHA satellite at moderate geomagnetic activity. The results and the generality of our solution indicate its promise as a new approach to dynamic modeling of the radiation belts.

Chiu, Y.; Nightingale, R.; Rinaldi, M.;

Published by: Journal of Geophysical Research      Published on: 04/1988

YEAR: 1988     DOI: 10.1029/JA093iA04p02619

Radial Transport



  1