Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 214 entries in the Bibliography.


Showing entries from 51 through 100


2019

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations

Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left-handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local time regions with different intensity. Compared with helium band waves, hydrogen band waves behave similarly except that they are often observed in low-density regions. These results reveal several important features regarding EMIC waves excitation and propagation.

Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082633

EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism

Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94\% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere and be a source of plasmaspheric hiss. This result suggests it is unlikely that chorus directly contributes a significant fraction of plasmaspheric hiss wave power.

Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.;

Published by: Geophysical Research Letters      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2019GL082111

chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle

A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail

To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES-13 and GOES-15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES-13 and GOES-15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves predominantly occur outside the plasmasphere. Meanwhile, the time duration and peak occurrence rate of EMIC waves associated with injections are shorter and limited to a narrower magnetic local time region than those without injections, indicating that these waves have localized source regions. He+ EMIC waves inside the plasmasphere associated with injection are usually accompanied by an increase in H+ flux within energies of 1\textendash50 keV through all magnetic local time regions, while most wave events outside the plasmasphere show less relationship with H+ flux increase. From these observations, we suggest that injected hot ions are the major driver of He+ EMIC waves inside the plasmasphere during active time. Expanding plasmasphere during quiet times can provide broad wave source regions for He+ EMIC waves on the dayside. However, H+ EMIC waves outside the plasmasphere show different characteristics, suggesting that these waves are generated by other processes.

Jun, C.-W.; Yue, C.; Bortnik, J.; Lyons, L.; Nishimura, Y.; Kletzing, C.; Wygant, J.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025886

EMIC waves associated with and without injections; Relationship between EMIC wave activity and energetic H+ flux variation; Simultaneous observations using the Van Allen Probes and GOES satellites; Spatial occurrence distributions of EMIC waves; Van Allen Probes

Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites

The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21\textendash29 June 2015 was investigated using high-resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery phase, He+ band EMIC waves were observed in the ionosphere and magnetosphere. During the late recovery phase, H+ band EMIC waves emerged in response to enhanced earthward convection during substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a duration of less than 186 min from coordinated observations. The results could provide additional insights into the spatial characteristics and propagation features of EMIC waves during storm periods.

Wang, Hui; He, Yangfan; ühr, Hermann; Kistler, Lynn; Saikin, Anthony; Lund, Eric; Ma, Shuying;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026299

EMIC wave; storm; substorm; Swarm; Van Allen Probes

2018

Observations and Fokker-Planck simulations of the L-shell, energy, and pitch-angle structure of Earth\textquoterights electron radiation belts during quiet times

The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle dependent inner belt core (L~<2.2 and E<700 keV), pitch-angle homogeneous outer belt low-energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch-angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for α0~<60\textdegree, E>100 keV, 3.5

Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA026111

electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions

The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms

Gyroresonant wave-particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm-phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science instrument are used to identify the chorus wave activity. Our results show a deeper (lower L*), stronger (higher flux), and earlier (epoch time) average seed electron enhancement and a resulting greater average radiation belt electron enhancement in coronal mass ejection storms compared to the corotating interaction region storms despite similar levels and lifetimes of average chorus wave activity for the two storm drivers. The earlier and deeper seed electron enhancement during the coronal mass ejection storms, likely driven by greater convection and substorm activity, provides a higher probability for local acceleration. These results emphasize the importance of the timing and the level of the seed electron enhancements in radiation belt dynamics.

Bingham, S.; Mouikis, C.; Kistler, L.; Boyd, A.; Paulson, K.; Farrugia, C.; Huang, C.; Spence, H.; Claudepierre, S.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2018

YEAR: 2018     DOI: 10.1029/2018JA025963

CIR storms; CME storms; Radiation belts; seed electrons; Van Allen Probes; VLF waves

Characteristics, Occurrence and Decay Rates of Remnant Belts associated with Three-Belt events in the Earth\textquoterights Radiation Belts

Shortly after the launch of the Van Allen Probes, a new three-belt configuration of the electron radiation belts was reported. Using data between September 2012 and November 2017, we have identified 30 three-belt events and found that about 18\% of geomagnetic storms result in such configuration. Based on the identified events, we evaluated some characteristics of the remnant (intermediate) belt. We determined the energy range of occurrence and found it peaks at E = 5.2 MeV. We also determined that the magnetopause location and SYM-H value may play an important role in the outer belt losses that lead to formation and location of the remnant belt. Finally, we calculated the decay rates of the remnant belt for all events and found that their lifetime gets longer as energy increases, ranging from days at E = 1.8 MeV up to months at E = 6.3 MeV suggesting that remnant belts are extremely persistent.

Pinto, V\; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Geophysical Research Letters      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018GL080274

Belt Formation; MeV Electrons; Outer Belt; Radiation belts; Remnant Belt; Three Belts; Van Allen Probes

Generation of EMIC Waves Observed by Van Allen Probes at Low L Shells

Observation of linearly polarized He+-band electromagnetic ion cyclotron (EMIC) waves at low L shells is a new, and quite unexpected, result from the Van Allen Probes mission. Here we analyze the two EMIC wave events observed by Van Allen Probes at low L shells and put forward a new-generation mechanism for the low-L EMIC waves. Both events were observed at L \~ 3 but one of them has a discrete spectrum near the O+ gyrofrequency and its second harmonic, whereas the second event has a broad spectrum between the O+ gyrofrequency and its second harmonic. For both events, the major conclusions of our analysis can be summarized as follows. (1) Only O+ causes EMIC wave generation, and instability is driven by the positive derivatives of distribution functions over perpendicular component of velocity. (2) The timing and frequencies of generated waves are in agreement with observations. The generated wave normal angles, however, are highly oblique being in strong disagreement with the minimum variance angles obtained from Fast Fourier transform. (3) The wave step analysis shows that a signal nonstationarity is not a major cause for disagreement between the minimum variance angles and theoretical predictions for normal angles. (4) A superposition of plane sine waves with the same frequency and normal angle but with different azimuthal angles for wave vector around the background magnetic field can reconcile the polarization properties of EMIC waves obtained from Fast Fourier transform and/or the wave step analysis with those predicted by the linear theory of EMIC waves.

Gamayunov, Konstantin; Min, Kyungguk; Saikin, Anthony; Rassoul, Hamid;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA025629

effects of wave superposition on EMIC waves; EMIC wave generation; EMIC waves at low L shells; growth rate calculations for EMIC waves; polarization properties of EMIC waves; Van Allen Probes; Van Allen Probes observations at low L shells

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are limited by half of the equatorial electron gyrofrequency, suggesting the importance of wave ducting. Modulation periods are typically between about 0.5 and 5 minutes, and they increase with the in-situ measured plasma number density. This increase is consistent with the main mechanisms suggested to explain the origin of the QP modulation. Two-point measurements performed by the Van Allen Probes are used to estimate a typical spatial extent of the emissions to about 1RE in radial distance and 1.5 hours in magnetic local time. Detailed wave analysis shows that the emissions are right-hand circularly polarized, and they usually come from several different directions simultaneously. They, however, predominantly propagate at rather low wave normal angles and away from the geomagnetic equator.

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft

Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are limited by half of the equatorial electron gyrofrequency, suggesting the importance of wave ducting. Modulation periods are typically between about 0.5 and 5 minutes, and they increase with the in-situ measured plasma number density. This increase is consistent with the main mechanisms suggested to explain the origin of the QP modulation. Two-point measurements performed by the Van Allen Probes are used to estimate a typical spatial extent of the emissions to about 1RE in radial distance and 1.5 hours in magnetic local time. Detailed wave analysis shows that the emissions are right-hand circularly polarized, and they usually come from several different directions simultaneously. They, however, predominantly propagate at rather low wave normal angles and away from the geomagnetic equator.

emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2018

YEAR: 2018     DOI: 10.1029/2018JA026058

EMFISIS; QP emissions; quasiperiodic; Van Allen Probes

Eigenmodes of the transverse Alfv\ enic resonator at the plasmapause: a Van Allen Probes case study

A Pc4 ULF wave was detected at spacecraft B of the Van Allen Probes at the plasmapause. A distinctive feature of this wave is the strong periodical modulation of the wave. It is assumed that this modulation is a beating of oscillations close in frequency: at least two harmonics with frequencies of 15.3 and 13.6 MHz are found. It is shown that these harmonics can be the eigenmodes of the transverse resonator at the local maximum of the Alfv\ en velocity. In addition, the observed wave was in a drift resonance with energetic 80 keV protons and could be generated by an unstable \textquotedblleftbump on tail\textquotedblright distribution of protons simultaneously observed with the wave. The estimate of the azimuthal wave number m made from the drift resonance condition gives a value of about -100, i.e., it is a westward propagating azimuthally small-scale wave.

Mager, Pavel; Mikhailova, Olga; Mager, Olga; Klimushkin, Dmitri;

Published by: Geophysical Research Letters      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018GL079596

Magnetosphere; Plasmapause; poloidal Alfven waves; transverse resonator; ULF waves; Van Allen Probes; Wave-particle interaction

MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock

The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well-defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, during, and after a modest interplanetary shock on December 14, 2015. Analysis shows several features consistent with current theory, as well as some unexpected features. During the most intense MMS wave burst, which began ~ 1 min after the end of a brief magnetosheath incursion, independent transverse EMIC waves with orthogonal linear polarizations appeared simultaneously at all four spacecraft. He++ band EMIC waves were observed by MMS inside the magnetosphere, whereas almost all previous studies of He++ band EMIC waves observed them only in the magnetosheath and magnetopause boundary layers. Transverse EMIC waves also appeared at Van Allen Probe A and GOES 13 very near the times when the magnetic field compression reached their locations, indicating that the compression lowered the instability threshold to allow for EMIC wave generation throughout the outer dayside magnetosphere. The timing of the EMIC waves at both MMS and Van Allen Probe A was consistent with theoretical expectations for EMIC instabilities based on characteristics of the proton distributions observed by instruments on these spacecraft.

Engebretson, M.; Posch, J.; Capman, N.; Campuzano, N.; elik, P.; Allen, R.; Vines, S.; Anderson, B.; Tian, S.; Cattell, C.; Wygant, J.; Fuselier, S.; Argall, M.; Lessard, M.; Torbert, R.; Moldwin, M.; Hartinger, M.; Kim, H.; Russell, C.; Kletzing, C.; Reeves, G.; Singer, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018JA025984

Van Allen Probes

Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss

A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A statistical calibration is performed against the density from the upper hybrid line, accounting for both systematic offsets and distribution scatter in the hiss-inferred densities. This calculation and calibration methodology provides accurate density estimates, both statistically and for individual events. These calibrated calculated densities are not subject to the same upper limit as densities inferred via other methodologies, thus permitting density estimates to be extended to lower L shells. This is of particular interest given that fpe/fce ratios indicate favorable conditions for efficient pitch-angle and energy diffusion in this region. Since hiss is almost always observable inside of the plasmasphere, the hiss-inferred densities are available for the majority of time periods, with 79\% data coverage for L < 4. This compares to 33\textendash37\% data coverage for other methods of inferring plasma densities. Due to the high-accuracy of these hiss-inferred densities and their plentiful availability, this methodology provides a viable alternative of calculating event-specific densities, and therefore diffusion coefficients, as opposed to relying on empirical models for periods when densities from other sources are not available.

Hartley, D.; Kletzing, C.; De Pascuale, S.; Kurth, W.; ik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2018

YEAR: 2018     DOI: 10.1029/2018JA025658

Density; EMFISIS; plasmasphere; Plasmaspheric Hiss; Van Allen Probes

The composition of plasma inside geostationary orbit based on Van Allen Probes observations

The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn-dusk asymmetry with ion pressures peaking at dusk and electron pressure peaking at dawn. In addition, ring current H+ with energies ranging from 50 keV up to several hundred keV is the dominant component of plasma pressure during both quiet (> 90\%) and active times (> 60\%), while Oxygen (O+) with 10 < E < 50 keV and electrons with 0.1 < E < 40 keV become important during active times contributing more than 25\% and 20\% on the nightside, respectively, while the Helium (He+) contribution is generally small. The results presented in this study provide a global picture of the equatorial plasma pressure distributions and the associated contributions from different species with different energy ranges, which advance our knowledge of wave generation and provide models with a systematic baseline of plasma composition.

Yue, Chao; Bortnik, Jacob; Li, Wen; Ma, Qianli; Gkioulidou, Matina; Reeves, Geoffrey; Wang, Chih-Ping; Thorne, Richard; T. Y. Lui, Anthony; Gerrard, Andrew; Spence, Harlan; Mitchell, Donald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025344

ion composition; plasma pressure; Plasmapause; Van Allen Probes

Longitudinal dependence of whistler mode electromagnetic waves in the Earth\textquoterights inner magnetosphere

We use the measurements performed by the DEMETER (2004-2010) and the Van Allen Probes (2012-2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth\textquoterights inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz\textendash2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus substantially affecting the overall wave intensity in the given frequency range. Finally, we show that the longitudinal dependence is most pronounced for waves with oblique wave normal angles.

ahlava, J.; emec, F.; ik, O.; a, I.; Hospodarskyy, G.; Parrot, M.; Kurth, W.; Bortnik, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025284

DEMETER; Van Allen Probes; Whistler waves

Longitudinal dependence of whistler mode electromagnetic waves in the Earth\textquoterights inner magnetosphere

We use the measurements performed by the DEMETER (2004-2010) and the Van Allen Probes (2012-2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth\textquoterights inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz\textendash2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus substantially affecting the overall wave intensity in the given frequency range. Finally, we show that the longitudinal dependence is most pronounced for waves with oblique wave normal angles.

ahlava, J.; emec, F.; ik, O.; a, I.; Hospodarskyy, G.; Parrot, M.; Kurth, W.; Bortnik, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2018

YEAR: 2018     DOI: 10.1029/2018JA025284

DEMETER; Van Allen Probes; Whistler waves

Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions

Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near-Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi-linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave-particle interactions, which have been successfully used to describe individual short-term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long-term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with electrons) chorus waves. In this paper, we use the THEMIS and Van Allen Probes datasets of field-aligned chorus waveforms to study two key characteristics of these waves: effective amplitude w (nonlinear interaction can occur when w > 2) and wave-packet length β (the number of wave periods within it). While as many as 10 - 15\% of chorus wave-packets are sufficiently intense (w > 2 - 3) to interact nonlinearly with relativistic electrons, most of them are short (β < 10) reducing the efficacy of such interactions. Revised models of non-linear interactions are thus needed to account for the long-term effects of these common, intense but short chorus wave packets. We also discuss the dependence of w, β on location (MLT, L-shell) and on the properties of the suprathermal electron population.

Zhang, X.-J.; Thorne, R.; Artemyev, A.; Mourenas, D.; Angelopoulos, V.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2018

YEAR: 2018     DOI: 10.1029/2018JA025390

chorus waves; Effective amplitude; nonlinear wave-particle interaction; spatial distribution; statistics; Van Allen Probes; Wave-packet length

Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets

One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler-mode chorus waves, is traditionally described using the quasi-linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching \~1\% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long-term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft to show that the majority of intense parallel chorus waves consists of relatively short wave-packets. Then, we construct a kinetic equation describing the nonlinear resonant interaction of radiation belt electrons with such short and intense wave-packets. We demonstrate that this peculiar type of nonlinear interaction produces similar effects as quasi-linear diffusion, i.e., a flattening of the electron velocity distribution function within a certain energy/pitch-angle range. The main difference is the much faster evolution of the electron distribution when nonlinear interaction prevails.

Mourenas, D.; Zhang, X.-J.; Artemyev, A.; Angelopoulos, V.; Thorne, R.; Bortnik, J.; Neishtadt, A.; Vasiliev, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025417

chorus waves; ; kinetic equation; nonlinear interaction; Radiation belts; short wave-packets; trapping; Van Allen Probes

Equatorial noise with quasiperiodic modulation: Multipoint observations by the Van Allen Probes spacecraft

Electromagnetic wave measurements performed by the two Van Allen Probes spacecraft are used to analyze equatorial noise emissions with a quasiperiodic modulation of the wave intensity. These waves are confined to the vicinity of the geomagnetic equator, and they occur primarily on the dayside. In situ plasma number density measurements are used to evaluate density variations related to the wave occurrence. It is shown that the events are sometimes effectively confined to low density regions, being observed at successive satellite passes over a time duration as long as one hour. The events typically occur outside the plasmasphere, and they are often cease to exist just at the plasmapause. The analysis of the spatial separations of the spacecraft at the times when the events were observed simultaneously by both of them allows us to estimate the event spatial dimensions. It is found that the event spatial extent is typically lower than about 0.25RE in radial distance and within about one hour in magnetic local time. Modulation periods of the events decrease with increasing plasma number density up to about 100cm-3. Principally no dependence is observed at larger densities, possibly indicating a propagation from other locations.

emec, F.; ik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025482

equatorial noise; quasiperiodic modulation; RBSP; Van Allen Probes

Global model of plasmaspheric hiss from multiple satellite observations

We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22-14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L* values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight through dawn to dusk. Plasmaspheric hiss is most intense and spatially extended in the 200-500 Hz frequency band during active conditions, 400

Meredith, Nigel; Horne, Richard; Kersten, Tobias; Li, Wen; Bortnik, Jacob; Sicard-Piet, elica; Yearby, Keith;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018JA025226

plasmasphere; Plasmaspheric Hiss; Radiation belts; Van Allen Probes

Radial Transport of Higher-Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes

The transport mechanism of the ring current ions differs among ion energies. Lower-energy (≲150 keV) ions are well known to be transported convectively. Higher-energy (≳150 keV) protons are reported to be transported diffusively, while there are few reports about transport of higher-energy oxygen ions. We report the radial transport of higher-energy oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm on 23\textendash25 April 2013 observed by the Van Allen Probes spacecraft. An enhancement of 1\textendash100 mHz magnetic fluctuations is simultaneously observed. Observations of 3 and 30 mHz geomagnetic pulsations indicate the azimuthal mode number is <=10. The fluctuations can resonate with the drift and bounce motions of the oxygen ions. The results suggest that the combination of the drift and drift-bounce resonances is responsible for the radial transport of higher-energy oxygen ions.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 05/2018

YEAR: 2018     DOI: 10.1029/2018GL077500

magnetic storm; oxygen ion; ring current; Van Allen Probes

Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift-bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30\textdegree or 150\textdegree, and 170\textendash180 keV for α = 50\textdegree or 130\textdegree. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbound legs of the orbit. We find the gradient to be outward on both legs, which means that energy is transferred from the protons to the wave. During the poloidal Pc4 wave event, the Dst* index shows a measurable increase of ~6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and from the variation of proton flux by the drift-bounce resonance. We suggest that energy transfer from the ring current protons to the poloidal Pc4 wave via the drift-bounce resonance contributes to up to ~85 \% of the increase of the Dst* index.

Oimatsu, S.; e, M.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; Smith, C.; MacDowall, R.; Mitchell, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA025087

Van Allen Probes

Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017GL076957

Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves

Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events

We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17\textendash18 March 2013 and non\textendashstorm time of 19\textendash20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17\textendash18 March 2013, the SYM-H minimum reached -130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19\textendash20 September 2013, the SYM-H remained higher than -30 nT, modestly intense chorus waves (peak Bw ~80 pT) occurred at L > 5.5, and electron fluxes at energies up to 3 MeV increased by a factor of ~5 at L > 5.5. The two electron flux enhancement events were simulated using the available wave distribution and diffusion coefficients from the GEM focus group Quantitative Assessment of Radiation Belt Modeling. By comparing the individual roles of local electron heating and radial transport, our simulation indicates that resonant interaction with chorus waves is the dominant process that accounts for the electron flux enhancement during the storm time event particularly near the flux peak locations, while radial diffusion by ultralow-frequency waves plays a dominant role in the enhancement during the non\textendashstorm time event. Incorporation of both processes reasonably reproduces the observed location and magnitude of electron flux enhancement.

Ma, Q.; Li, W.; Bortnik, J.; Thorne, R.; Chu, X.; Ozeke, L.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017JA025114

electron accelerationl whistler mode waves; radial diffusion; radiation belt simulation; Van Allen Probes; Van Allen Probes observation

Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes\textquoteright measurements

We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes\textquoteright (1.1\textendash5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) Ahp, \~0.81 to 1.00 (\~0.62), observed in the dawn (dusk), 0000 < MLT <= 1200 (1200 < MLT <= 2400), sectors. Measurements of Ahp are found to decrease in the presence of EMIC wave activity. Ahp amplification factors are determined and vary with respect to EMIC wave-band and MLT. He+-band events generally require double (quadruple) the measured Ahp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.

Saikin, A.A.; Jordanova, V.K.; Zhang, J.C.; Smith, C.W.; Spence, H.E.; Larsen, B.A.; Reeves, G.D.; Torbert, R.B.; Kletzing, C.A.; Zhelavskaya, I.S.; Shprits, Y.Y.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1016/j.jastp.2018.01.024

EMIC waves Van Allen Probes Linear theory Wave generation; Van Allen Probes

Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations

Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and between 1900 and 0900 MLT. This structure is similar to that reported for oblique chorus waves in the equatorial region, perhaps suggesting a causal link between the two wave modes. Ray tracing results from HOTRAY confirm that is feasible for these oblique chorus waves to be a source of the observed oblique plasmaspheric hiss population. The decrease in oblique plasmaspheric hiss occurrence rates during more elevated geomagnetic activity levels may be attributed to the increase in Landau resonant electrons causing oblique chorus waves to be more substantially damped outside of the plasmasphere. In turn, this restricts the amount of wave power that can access the plasmasphere and evolve into oblique plasmaspheric hiss. These results confirm that, despite the difference in location of this bimodal distribution compared to previous studies, a direct link between oblique equatorial chorus outside of the plasmasphere and oblique hiss at low L shells is plausible. As such, these results are in keeping with the existing theory of chorus as the source of plasmaspheric hiss.

Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2018

YEAR: 2018     DOI: 10.1002/2017JA024593

Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle

Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification

We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma sheet populations. The ring current buildup during the first subphase was caused by the penetration of a relatively low-energy population that had existed in the plasma sheet during a prolonged prestorm northward IMF interval. The deeper penetration of the lower-energy population was responsible for the second subphase. The third subphase, where the storm was unexpectedly intensified to a Dst/SYM-H level of <-200 nT, was caused by the penetration of a hot, dense plasma sheet population. We attribute the hot, dense population to the entry of hot, dense solar wind into the plasma sheet and/or ion heating/acceleration in the near-Earth plasma sheet associated with magnetotail activity such as reconnection and dipolarization.

Keika, Kunihiro; Seki, Kanako; e, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis; Mitchell, Donald; Gkioulidou, Matina; Manweiler, Jerry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017JA024462

enhancements of oxygen ions of ionospheric origin; plasma transport from the plasma sheet into the inner magnetosphere; RBSPICE; unexpected intensification of the magnetic storm; Van Allen Probes

2017

Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics

Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial domain, rarely available based solely on the statistics obtained from only one satellite mission. Here, we seize the opportunity of synthesizing data from the Van Allen Probes and Cluster spacecraft to provide a new comprehensive chorus wave model in the outer radiation belt. The respective spatial coverages of these two missions are shown to be especially complementary and further allow a good cross-calibration in the overlap domain. We used 4 years (2012-2016) of Van Allen Probes VLF data in the chorus frequency range up to 12 kHz at latitudes lower than 20 degrees, combined with 10 years of Cluster VLF measurements up to 4 kHz in order to provide a full coverage of geomagnetic latitudes up to 45 degrees in the chorus frequency range 0.1fce-0.8fce. The resulting synthetic statistical model of chorus wave amplitude, obliquity, and frequency is presented in the form of analytical functions of latitude and Kp in three different MLT sectors and for two ranges of L-shells outside the plasmasphere. Such a synthetic and reliable chorus model is crucially important for accurately modeling global acceleration and loss of electrons over the long run in the outer radiation belt, allowing a comprehensive description of electron flux variations over a very wide energy range.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Mozer, F.; Hospodarsky, G.; Bonnell, J.; Krasnoselskikh, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017JA024843

chorus waves model; Van Allen Probes

Chorus Wave Modulation of Langmuir Waves in the Radiation Belts

Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.

Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard; Zhou, Meng; Kurth, William; Hospodarsky, George; Funsten, Herbert; Spence, Harlan;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL075877

Chorus wave; Landau resonance; Langmuir wave; nonlinear interaction; Radiation belt; Van Allen Probes; wave modulation

Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4o close to the plasmapause and inside a localized density inhomogeneity with about 30\% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.

Demekhov, A.; Manninen, J.; ik, O.; Titova, E.;

Published by: Geophysical Research Letters      Published on: 12/2017

YEAR: 2017     DOI: 10.1002/2017GL076139

ground-spacecraft observations; Magnetosphere; Van Allen Probes; VLF chorus

Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising-tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have the energy dispersion expected for trapped electrons bouncing between mirror points. This confirms that the electrons are rapidly (nonlinearly) scattered into the loss cone by a coherent interaction with the large amplitude (up to \~900 pT) chorus. Comparison of observed time-averaged microburst flux and estimated total electron drift shell content at L = 5.6 indicate that microbursts may represent a significant source of energetic electron loss in the outer radiation belt.

Breneman, A.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D.; Santolik, O.; Wygant, J.; Cattell, C.; Thaller, S.; Blake, B.; Spence, H.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 11/2017

YEAR: 2017     DOI: 10.1002/2017GL075001

Chorus; conjunction; FIREBIRD; microburst; Van Allen Probes

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32\textdegree < MLat < -15\textdegree), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLat ~ -31\textdegree). Most of the elements had \textquotedbllefthook\textquotedblright like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30\textdegree from the direction anti-parallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Energetic proton spectra measured by the Van Allen Probes

We test the hypothesis that pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during March 17-20, 2013 and March 17-20, 2015, we measure proton energy spectra in the region 3 <= L <= 6 using the RBSPICE B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

Summers, Danny; Shi, Run; Engebretson, Mark; Oksavik, Kjellmar; Manweiler, Jerry; Mitchell, Donald;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024484

EMIC-wave -proton scattering; proton ring current; Van Allen Probes

A neural network model of three-dimensional dynamic electron density in the inner magnetosphere

A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The DEN3D model takes spacecraft location and time series of solar and geomagnetic indices (F10.7, SYM-H, and AL) as inputs. It can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2. Its predictive ability on out-of-sample data is tested on field-aligned density profiles from the IMAGE satellite. DEN3D\textquoterights predictive ability provides unprecedented opportunities to gain insight into the 3-D behavior of the inner magnetospheric plasma density at any time and location. As an example, we apply DEN3D to a storm that occurred on 1 June 2013. It successfully reproduces various well-known dynamic features in three dimensions, such as plasmaspheric erosion and recovery, as well as plume formation. Storm time long-term density variations are consistent with expectations; short-term variations appear to be modulated by substorm activity or enhanced convection, an effect that requires further study together with multispacecraft in situ or imaging measurements. Investigating plasmaspheric refilling with the model, we find that it is not monotonic in time and is more complex than expected from previous studies, deserving further attention.

Chu, X.; Bortnik, J.; Li, W.; Ma, Q.; Denton, R.; Yue, C.; Angelopoulos, V.; Thorne, R.; Darrouzet, F.; Ozhogin, P.; Kletzing, C.; Wang, Y.; Menietti, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024464

The characteristic response of whistler mode waves to interplanetary shocks

Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

Yue, Chao; Chen, Lunjin; Bortnik, Jacob; Ma, Qianli; Thorne, Richard; Angelopoulos, Vassilis; Li, Jinxing; An, Xin; Zhou, Chen; Kletzing, Craig; Reeves, Geoffrey; Spence, Harlan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024574

IP shocks; MLT dependent; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes; whistler mode chorus

Diffusive transport of several hundred keV electrons in the Earth\textquoterights slot region

We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp \textquotelefttop-hat\textquoteright shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

Ma, Q.; Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Spence, H.; Turner, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017JA024452

Electron transport; Energetic electron diffusion; pitch angle scattering; Slot region dynamics; Van Allen Probes; Van Allen Probes observation; Waves in plasmasphere

The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L (L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

Yue, Chao; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; An, Xin; Chappell, C.; Gerrard, Andrew; Lanzerotti, Louis; Shi, Quanqi; Reeves, Geoffrey; Spence, Harlan; Mitchell, Donald; Gkioulidou, Matina; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024421

bi-directional field-aligned; H+ Pitch angle distributions; plasmaspheric H+; radiation belt H+; ring current; Van Allen Probes; warm Plasma cloak

CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models

Numerical simulation studies of the Earth\textquoterights radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We then perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

Aryan, Homayon; Sibeck, David; Bin Kang, Suk-; Balikhin, Michael; Fok, Mei-Ching; Agapitov, Oleksiy; Komar, Colin; Kanekal, Shrikanth; Nagai, Tsugunobu;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024159

Chorus and plasmaspheric hiss wave models; CIMI numerical simulations; Geomagnetic storm events; Radiation belt electron flux enhancements; Van Allen Probes; VLF waves; Wave-particle interaction

Statistical Properties of Low Frequency Plasmaspheric Hiss

Plasmaspheric hiss is an important wave mode for the dynamics of inner terrestrial magnetosphere plasma populations. It acts to scatter high energy electrons out of trapped orbits about Earth and into the atmosphere, defining the inner edge of the radiation belts over a range of energies. A low-frequency component of hiss was recently identified and is important for its ability to interact with higher energy electrons compared to typically considered hiss frequencies. This study compares the statistical properties of low and high frequency plasmaspheric hiss in the terrestrial magnetosphere, demonstrating that they are statistically distinct wave populations. Low frequency hiss shows different behavior in frequency space, different spatial localization (in magnetic local time and radial distance), and different amplitude distributions compared to high frequency hiss. The observed statistical properties of low frequency hiss are found to be consistent with recently developed theories for low frequency hiss generation. The results presented here suggest that careful consideration of low frequency hiss properties can be important for accurate inclusion of this wave population in predictive models of inner magnetosphere plasma dynamics.

Malaspina, David; Jaynes, Allison; Hospodarsky, George; Bortnik, Jacob; Ergun, Robert; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2017

YEAR: 2017     DOI: 10.1002/2017JA024328

inner magnetosphere; plasma waves; Plasmaspheric Hiss; Van Allen Probes; Wave Statistics

Electron-acoustic solitons and double layers in the inner magnetosphere

The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV) is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron-acoustic waves (existing due to the presence of cold and hot electrons) and follow the Korteweg-de Vries (KdV) dispersion relation derived for the observed plasma conditions (electron energy spectrum is a power law between about 100 eV and 10 keV and Maxwellian above 10 keV). The ESW spatial scales are in general agreement with the KdV theory. We interpret the asymmetric ESW in terms of electron-acoustic solitons and double layers (shocks waves).

Vasko, I; Agapitov, O.; Mozer, F.; Bonnell, J.; Artemyev, A.; Krasnoselskikh, V.; Reeves, G.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017GL074026

double layers; electron-acoustic waves; inner magnetosphere; solitons; Van Allen Probes

An improved sheath impedance model for the Van Allen probes EFW instrument: Effects of the spin axis antenna

A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for the differences between the observed and calculated wave electric field. The current study builds on this previous work by investigating the remaining discrepancies, identifying their cause, and developing an improved sheath impedance correction. Analysis reveals that anomalous gains are caused by the spin axis antennas measuring too much electric field at specific densities and frequencies. This is accounted for in an improved sheath impedance model by introducing a density-dependent function describing the relative effective length of the probe separation, Leff, in addition to the sheath capacitance and resistance values previously calculated. Leff values vary between between 0.5 and 1.2, with values >1 accounting for the anomalous gains and values <1 accounting for the shorting effect at low densities. Applying this improved sheath impedance model results in a significant increase in the agreement level between observed and calculated electric field power spectra and wave powers over the previous model.

Hartley, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Bounds, S.; Averkamp, T.; Bonnell, J.; ik, O.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023597

antenna sheath impedance; EFW; electric field; EMFISIS; Van Allen Probes; whistler mode waves

Diffusive scattering of electrons by electron holes around injection fronts

Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of math formula5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L \~ 5\textendash8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023337

electron holes; electron losses; injection; Radiation belt; solitary waves; Van Allen Probes

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales

Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150\textendash500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured over a large scale, which modulate the plasmaspheric density and result in the modulation of hiss waves via local amplification. In a later period, the 500\textendash1500 Hz periodic rising-tone whistler mode waves were strongly correlated when the two probes traversed large spatial regions and even across the plasmapause. These periodic rising-tone emissions recurred with roughly the same period as the ULF wave, but there was no one-to-one correspondence, and a cross-correlation analysis suggests that they possibly originated from large L shells although the actual cause needs further investigation.

Li, Jinxing; Bortnik, Jacob; Li, Wen; Thorne, Richard; Ma, Qianli; Chu, Xiangning; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Wygant, John; Breneman, Aaron; Thaller, Scott;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2017

YEAR: 2017     DOI: 10.1002/2016JA023706

coherent waves; multisatellite; periodic rising tone; Van Allen Probes; whistler mode

Spectra of keV protons related to ion-cyclotron wave packets

We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that show steeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

Khazanov, K.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.;

Published by: Physics of Plasmas      Published on: 01/2017

YEAR: 2017     DOI: http://dx.doi.org/10.1063/1.4973323

Diffusion; Particle precipitation; protons; Van Allen Probes; wave particle interactions; Wave power

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes



  1      2      3      4      5