Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 506 entries in the Bibliography.


Showing entries from 401 through 450


2014

Characteristics of pitch angle distributions of 100 s keV electrons in the slot region and inner radiation belt

The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100 s keV electron PADs below L = 4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90o), cap (exceedingly peaking narrowly around 90o) and 90o-minimum (lower flux at 90o) PADs. By examining the characteristics of the PADs of ~460 keV electrons for over a year, we find that the 90o-minimum PADs are generally present in the inner belt (L < 2), while normal PADs dominate at .L ~3.5 - 4. In the region between, 90o-minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90o-minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, butthis mechanism can hardly explain the formation of 90o-minimum PADs at the center of inner belt.

Zhao, H.; Li, X.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Jaynes, A.; Malaspina, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020386

energetic electrons; Inner radiation belt; Pitch angle distribution; plasmasphere; Slot region; Van Allen Probes; Wave-particle interaction

Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms

n this study we investigate the link between precipitating electrons from the Van Allen radiation belts and the dynamical plasmapause. We consider electron precipitation observations from the Polar Orbiting Environmental Satellite (POES) constellation during geomagnetic storms. Superposed epoch analysis is performed on precipitating electron observations for the 13 year period of 1999 to 2012 in two magnetic local time (MLT) sectors, morning and afternoon. We assume that the precipitation is due to wave-particle interactions and our two MLT sectors focus on chorus (outside the plasmapause) and plasmaspheric hiss (inside the plasmapause) waves. We generate simple expressions based on the geomagnetic index, Dst, which reproduce the chorus-driven observations for the >30 keV precipitating electron flux magnitudes. Additionally, we find expressions for the fitted spectral index to describe the flux variation with energy, allowing a full energy reproduction as a function of distance from the plasmapause. The hiss-driven precipitating flux occurs inside the plasmapause but is independent of distance from the plasmapause. In the POES observations the hiss-induced electron precipitation is only detectable above the instrument noise in the >300 keV and P6 (>800 keV) channels of the flux detection instrument. We have derived expressions for the storm time variation in flux inside the plasmapause using Dst as a proxy. The observations show that there is little evidence for >800 keV electron precipitation occurring outside of the plasmapause, in the MLT sectors studied.

Whittaker, Ian; Clilverd, Mark; Rodger, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020446

energetic electron precipitation; Plasmapause; POES

Excitation of nightside magnetosonic waves observed by Van Allen Probes

During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagation and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L =5.6 to the location L =5.0, but remain nearly stable at locations L <5.0 Moreover, waves launched toward lower L-shells with different initial azimuthal angles propagate across different MLT regions with divergent paths at first, then gradually turn back toward higher L-shells and propagate across different MLT regions with convergent paths. The current results further reveal that MS waves are generated by a ring distribution of ~10 keV proton and proton ring in one region can contribute to the MS wave power in another region.

Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020481

magnetosonic wave; RBSP results; Van Allen Probes; Wave-particle interaction

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts

Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Recent observations have revealed unexpected radiation belt morphology7, 8, especially at ultrarelativistic kinetic energies9, 10 (more than five megaelectronvolts). Here we analyse an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data11 reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth\textquoterights intrinsic magnetic field, and that inward radial diffusion is unlikely to be inhibited by scattering by electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave\textendashparticle pitch angle scattering deep inside the Earth\textquoterights plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.;

Published by: Nature      Published on: 11/2014

YEAR: 2014     DOI: 10.1038/nature13956

Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a \textquotedbllefttest-kinetic model\textquotedblright) with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90\textdegree from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energies between 500 keV and 1.5 MeV near geosynchronous orbit. We also demonstrate that electrons in this energy range satisfy the drift resonance condition for the ULF waves produced by the MHD model. This confirms the conclusions reached by Tan et al. (2011), that the energization process in this case is dominated by drift-resonant interactions between electrons and MHD fast mode waves, produced by fluctuations in solar wind dynamic pressure.

Degeling, A.; Rankin, R.; Zong, Q.-G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2013JA019672

adiabatic electron transport; magnetopause buffeting; Radiation belts; ULF waves

Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. The coherence coefficient of rising and falling tones is extremely large (~1), while the coherence coefficient of hiss-like emissions is smaller but is still larger than 0.5. For all categories of whistler mode waves, the normalized bandwidth increases at larger L shells. Furthermore, the normalized bandwidth is positively correlated with local fpe/fce but is inversely correlated with the electron density. Interactions between radiation belt electrons and whistler mode waves have been widely described by quasi-linear diffusion theory. Our results suggest that although quasi-linear theory is not entirely applicable for modeling electron interactions with rising and falling tones due to their narrow bandwidth and high coherence coefficient, it is suitable to treat wave-particle interactions between electrons and low-amplitude hiss-like emissions. Moreover, the correlations between the normalized bandwidth of chorus waves (especially the discrete emissions) and other parameters may provide insights for the generation mechanism of chorus waves.

Gao, X.; Li, W.; Thorne, R.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020158

bandwidth; coherence coefficient; nonlinear; quasi-linear; THEMIS; whistler mode waves

An unusual long-lived relativistic electron enhancement event excited by sequential CMEs

An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 \texttimes 102 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 to 3.5 \texttimes 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak remains over 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 for about 30 days. The drift-resonance between ULF waves, which arose from high-speed solar wind and frequent impulses of solar wind dynamic pressure, and energetic electrons injected by substorms could be an important acceleration mechanism in this event. The local acceleration by whistler mode chorus could be another mechanism contributing to this enhancement. The plasmaspheric response to the interplanetary disturbances reveals that the enhanced outer zone is divided into two portions by the plasmapause. Accordingly, the slow loss rate in the plasmasphere due to hiss primarily contributed to the long-lived characteristic of this event. This event reveals that the outer zone population behaviors are dominated by the interplanetary variations together with the responses of geomagnetic field and plasmasphere to these variations.

Yang, Xiao; Zhu, Guang; Zhang, Xiao; Sun, Yue; Liang, Jin; Wei, Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA019797

Geomagnetic storm/substorm; Interplanetary magnetic field; Plasmapause; Relativistic electron; Solar wind

Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper-band chorus, and that the hot component drives the electromagnetic lower-band chorus; the gap at \~ Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

Fu, Xiangrong; Cowee, Misa; Friedel, Reinhard; Funsten, Herbert; Gary, Peter; Hospodarsky, George; Kletzing, Craig; Kurth, William; Larsen, Brian; Liu, Kaijun; MacDonald, Elizabeth; Min, Kyungguk; Reeves, Geoffrey; Skoug, Ruth; Winske, Dan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020364

Chorus; HOPE; particle-in-cell simulation; Van Allen Probes

The Evolving Space Weather System - Van Allen Probes Contribution

The overarching goal and purpose of the study of space weather is clear - to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800\textquoterights to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA\textquoterights Van Allen Probes\textquoteright twin pair of satellites, launched in August of 2012 and orbiting directly through Earth\textquoterights severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP, http://vanallenprobes.jhuapl.edu), were renamed soon after launch to honor the discoverer of Earth\textquoterights radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes (Mauk et al., 2012 and other team contributions in the same special issue of Space Science Reviews, 2012) are one part of NASA\textquoterights Living With a Star (LWS, http://lws.gsfc.nasa.gov) program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions and their effects on the geospace and Earth environment.

Zanetti, L.; Mauk, B.; Fox, N.J.; Barnes, R.J.; Weiss, M.; Sotirelis, T.S.; Raouafi, N.-E.; Kessel, R.; Becker, H.;

Published by: Space Weather      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014SW001108

Radiation belts; Van Allen Probes

Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts

We present simulations of the outer electron radiation belt using a new ULF wave-driven radial diffusion model, including empirical representations of loss due to chorus and plasmaspheric hiss. With an outer boundary condition constrained by in situ electron flux observations, we focus on the impacts of magnetopause shadowing and outward radial diffusion in the heart of the radiation belt. Third invariant conserving solutions are combined to simulate the L shell and time dependence of the differential flux at a fixed energy. Results for the geomagnetically quiet year of 2008 demonstrate not only remarkable cross L shell impacts from magnetopause shadowing but also excellent agreement with the in situ observations even though no internal acceleration source is included in the model. Our model demonstrates powerful utility for capturing the cross-L impacts of magnetopause shadowing with significant prospects for improved space weather forecasting. The potential role of the plasmasphere in creating a third belt is also discussed.

Ozeke, Louis; Mann, Ian; Turner, Drew; Murphy, Kyle; Degeling, Alex; Rae, Jonathan; Milling, David;

Published by: Geophysical Research Letters      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014GL060787

magnetopause shadowing; Radiation belt; ULF wave radial diffusion

Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts

We present simulations of the outer electron radiation belt using a new ULF wave-driven radial diffusion model, including empirical representations of loss due to chorus and plasmaspheric hiss. With an outer boundary condition constrained by in situ electron flux observations, we focus on the impacts of magnetopause shadowing and outward radial diffusion in the heart of the radiation belt. Third invariant conserving solutions are combined to simulate the L shell and time dependence of the differential flux at a fixed energy. Results for the geomagnetically quiet year of 2008 demonstrate not only remarkable cross L shell impacts from magnetopause shadowing but also excellent agreement with the in situ observations even though no internal acceleration source is included in the model. Our model demonstrates powerful utility for capturing the cross-L impacts of magnetopause shadowing with significant prospects for improved space weather forecasting. The potential role of the plasmasphere in creating a third belt is also discussed.

Ozeke, Louis; Mann, Ian; Turner, Drew; Murphy, Kyle; Degeling, Alex; Rae, Jonathan; Milling, David;

Published by: Geophysical Research Letters      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014GL060787

magnetopause shadowing; Radiation belt; ULF wave radial diffusion

Modeling Gradual Diffusion Changes in Radiation Belt Electron Phase Space Density for the March 2013 Van Allen Probes Case Study

March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two timescales of variation, diffusive and rapid dropout and restoration [Baker et al., 2014]. A radial diffusion model was applied to the month-long interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant <=400 MeV/G, but peaks in phase space density observed by the ECT instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. The model does well for much of the month-long interval, capturing three of four enhancements in phase space density which emerge from the outer boundary, while the strong enhancement following dropout on 17-18 March requires local acceleration at higher first invariant (M = 1000 MeV/G vs. 200 MeV/G) not included in our model. We have incorporated phase space density from ECT measurement at the outer boundary and plasmapause determination from the EFW instrument to separate hiss and chorus loss models.

Li, Zhao; Hudson, Mary; Jaynes, Allison; Boyd, Alexander; Malaspina, David; Thaller, Scott; Wygant, John; Henderson, Michael;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020359

March 2013; radial diffusion; Van Allen Probes

Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

Pakhotin, I.; Drozdov, A; Shprits, Y; Boynton, R.; Subbotin, D.; Balikhin, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020238

Radiation belts; Space weather

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

THEMIS measurements of quasi-static electric fields in the inner magnetosphere

We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of strong electric fields inside L =3 during the most active times. The extensive dataset from THEMIS also confirms the day/night asymmetry on the dusk side, where the enhancement is closest to Earth in the dusk-midnight sector, and is farther away closer to noon. A similar, but smaller in magnitude, local maximum is observed on the dawn side near L =4. The noon sector shows the smallest average electric fields, and for more active times, the enhancement develops near L =7 rather than L =4. We also investigate the impact of the uncertain boom-shorting factor on the results, and show that while the absolute magnitude of the electric field may be underestimated, the trends with geomagnetic activity remain intact.

Califf, S.; Li, X.; Blum, L.; Jaynes, A.; Schiller, Q.; Zhao, H.; Malaspina, D.; Hartinger, M.; Wolf, R.; Rowland, D.; Wygant, J.; Bonnell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA020360

convection; double probe; electric field; inner magnetosphere

Magnetospheric Multiscale Science Mission Profile and Operations

The Magnetospheric Multiscale (MMS) mission and operations are designed to provide the maximum reconnection science. The mission phases are chosen to investigate reconnection at the dayside magnetopause and in the magnetotail. At the dayside, the MMS orbits are chosen to maximize encounters with the magnetopause in regions where the probability of encountering the reconnection diffusion region is high. In the magnetotail, the orbits are chosen to maximize encounters with the neutral sheet, where reconnection is known to occur episodically. Although this targeting is limited by engineering constraints such as total available fuel, high science return orbits exist for launch dates over most of the year. The tetrahedral spacecraft formation has variable spacing to determine the optimum separations for the reconnection regions at the magnetopause and in the magnetotail. In the specific science regions of interest, the spacecraft are operated in a fast survey mode with continuous acquisition of burst mode data. Later, burst mode triggers and a ground-based scientist in the loop are used to determine the highest quality data to downlink for analysis. This operations scheme maximizes the science return for the mission. Space Science Reviews Space Science Reviews Look

Fuselier, S.; Lewis, W.; Schiff, C.; Ergun, R.; Burch, J.; Petrinec, S.; Trattner, K.;

Published by: Space Science Reviews      Published on: 09/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0087-x

Magnetic reconnection; Magnetospheric multiscale; Space mission design; Spacecraft orbits

Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth\textquoterights atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5\textdegree \texttimes 0.5\textdegree grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 \textpm 0.9 and 0.4 \textpm 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 \textpm 2.2 and 0.6 \textpm 6.8 TECu respectively with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei;

Published by: Journal of Space Weather and Space Climate      Published on: 09/2014

YEAR: 2014     DOI: 10.1051/swsc/2014028

Ionosphere

Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis

Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992\textendash2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm, we found the log10 maximum relativistic electron flux 48\textendash120 h after the end of the main phase of each storm. Each predictor variable was averaged over the 12 h before the storm, the main phase, and the 48 h following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm Bz were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from 0.645 to 0.795.

Simms, Laura; Pilipenko, Viacheslav; Engebretson, Mark; Reeves, Geoffrey; Smith, A.; Clilverd, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA019955

empirical modeling; multiple regression; multivariable analysis

Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis

Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field Bz, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992\textendash2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm, we found the log10 maximum relativistic electron flux 48\textendash120 h after the end of the main phase of each storm. Each predictor variable was averaged over the 12 h before the storm, the main phase, and the 48 h following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm Bz were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from 0.645 to 0.795.

Simms, Laura; Pilipenko, Viacheslav; Engebretson, Mark; Reeves, Geoffrey; Smith, A.; Clilverd, Mark;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA019955

empirical modeling; multiple regression; multivariable analysis

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 \textendash 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: i) associated pressure enhancement, ii) the time duration of this enhancement, iii) and the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm-time inner magnetosphere.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes

The role of small-scale ion injections in the buildup of Earth\textquoterights ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm

Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ -137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightside magnetosphere in the region L ~ 4 \textendash 6. Although isolated injections have been previously reported inside geosynchronous orbit, the large number of small-scale injections observed in this event suggests that, during geomagnetic storms injections provide a robust mechanism for transporting energetic ions deep into the inner magnetosphere. In order to understand the role that these injections play in the ring current dynamics, we determine the following properties for each injection: i) associated pressure enhancement, ii) the time duration of this enhancement, iii) and the lowest and highest energy channels exhibiting a sharp increase in their intensities. Based on these properties, we estimate the effect of these small-scale injections on the pressure buildup during the storm. We find that this mode of transport could make a substantial contribution to the total energy gain in the storm-time inner magnetosphere.

Gkioulidou, Matina; Ukhorskiy, A.; Mitchell, D.; Sotirelis, T.; Mauk, B.; Lanzerotti, L.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014JA020096

Geomagnetic storms; Ion injections; ring current; Van Allen Probes

The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere

We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\textquoterights plasmasphere at locations away from the generation region.

Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/2014GL061414

magnetosonic waves; Van Allen Probes; wave excitation; wave propagation

Calculation of whistler-mode wave intensity using energetic electron precipitation

The energetic electron population measured by multiple low-altitude POES satellites is used to infer whistlermode wave amplitudes using a physics-based inversion technique. We validate this technique by quantitatively analyzing a conjunction event between the Van Allen Probes and POES, and find that the inferred hiss wave amplitudes from POES electron measurements agree remarkably well with directly measured hiss waves amplitudes. We also use this technique to construct the global distribution of chorus wave intensity with extensive coverage over a broad L-MLT region during the 8\textendash9 October 2012 storm and demonstrate that the inferred chorus wave amplitudes agree well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The evolution of the whistler-mode wave intensity inferred from low-altitude electron measurements can provide real-time global estimates of the wave intensity, which cannot be obtained from in-situ wave measurements by equatorial satellites alone, but are crucial in quantifying radiation belt electron dynamics.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929965

Electron traps; Energy measurement; Plasma measurements; Van Allen Probes

The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison

Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observations from an independent experimental data set. Our study examines the reported geometric factors for the MEPED electron flux instrument against the high-energy resolution Instrument for Detecting Particles (IDPs) on the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions satellite when they are located at similar locations and times, thereby viewing the same quasi-trapped population of electrons. We find that the new Monte Carlo-produced geometric factors accurately describe the response of the POES MEPED instrument. We go on to develop a set of equations such that integral electron fluxes of a higher accuracy are obtained from the existing MEPED observations. These new MEPED integral fluxes correlated very well with those from the IDP instrument (>99.9\% confidence level). As part of this study we have also tested a commonly used algorithm for removing proton contamination from MEPED instrument observations. We show that the algorithm is effective, providing confirmation that previous work using this correction method is valid.

Whittaker, Ian; Rodger, Craig; Clilverd, Mark; Sauvaud, \;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020021

DEMETER; energetic electron flux; geometric factor; POES; Radiation belts

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves

Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This provides plausible experimental evidence of stronger pitch-angle scattering loss caused by oblique waves than by quasi-parallel waves with the same magnetic wave amplitudes, as predicted by numerical calculations.

Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061260

chorus waves; electron precipitation; oblique whistler; pitch angle scattering

Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves

We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth\textquoterights radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail inline image such that η < 5/2, the efficiency of nonlinear acceleration could be more effective than the conventional quasi-linear acceleration for 100 keV electrons.

Artemyev, A.; Vasiliev, A.; Mourenas, D.; Agapitov, O.; Krasnoselskikh, V.; Boscher, D.; Rolland, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/grl.v41.1610.1002/2014GL061380

particle trapping; Radiation belts; Wave-particle interaction

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low frequency waves to undergo cyclic ray paths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Observations of the inner radiation belt: CRAND and trapped solar protons

Measurements of inner radiation belt protons have been made by the Van Allen Probes Relativistic Electron-Proton Telescopes as a function of kinetic energy (24 to 76 MeV), equatorial pitch angle, and magnetic L shell, during late-2013 and early-2014. A probabilistic data analysis method reduces background from contamination by higher energy protons. Resulting proton intensities are compared to predictions of a theoretical radiation belt model. Then trapped protons originating both from cosmic ray albedo neutron decay (CRAND) and from trapping of solar protons are evident in the measured distributions. An observed double-peaked distribution in L is attributed, based on the model comparison, to a gap in the occurrence of solar proton events during the 2007 to 2011 solar minimum. Equatorial pitch angle distributions show that trapped solar protons are confined near the magnetic equator, but that CRAND protons can reach low-altitudes. Narrow pitch angle distributions near the outer edge of the inner belt are characteristic of proton trapping limits.

Selesnick, R.; Baker, D.; Jaynes, A.; Li, X.; Kanekal, S.; Hudson, M.; Kress, B.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020188

Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within \~15 hours. A clear peak in electron phase space density observed at L* \~ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement with the observed electron PSD near its peak in timing, energy dependence, and pitch angle distribution, but other loss processes and radial diffusion may be required to explain the differences in observation and simulation at other locations away from the PSD peak. Our simulation results suggest that local acceleration by chorus waves is likely to be a robust and repetitive process and plays a critical role in accelerating radiation belt electrons from injected convective energies (\~ 100 keV) to ultra-relativistic energies (multi MeV).

Thorne, R.; Li, W.; Ma, Q.; Ni, B.; Bortnik, J.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929882

Atmospheric waves; Van Allen Belts; Van Allen Probes

Statistical analysis of electron lifetimes at GEO: Comparisons with chorus-driven losses

The population of electrons in the Earth\textquoterights outer radiation belt increases when the magnetosphere is exposed to high-speed streams of solar wind, coronal mass ejections, magnetic clouds, or other disturbances. After this increase, the number of electrons decays back to approximately the initial population. This study statistically analyzes the lifetimes of the electron at Geostationary Earth Orbit (GEO) from Los Alamos National Laboratory electron flux data. The decay rate of the electron fluxes are calculated for 14 energies ranging from 24 keV to 3.5 MeV to identify a relationship between the lifetime and energy of the electrons. The statistical data show that electron lifetimes increase with energy. Also, the statistical results show a good agreement up to \~1 MeV with an analytical model of lifetimes, where electron losses are caused by their resonant interaction with oblique chorus waves, using average wave intensities obtained from Cluster statistics. However, above 500 keV, the measured lifetimes increase with energy becomes less steep, almost stopping. This could partly stem from the difficultly of identifying lifetimes larger than 10 days, for high energy, with the methods and instruments of the present study at GEO. It could also result from the departure of the actual geomagnetic field from a dipolar shape, since a compressed field on the dayside should preferentially increase chorus-induced losses at high energies. However, during nearly quiet geomagnetic conditions corresponding to lifetime measurement periods, it is more probably an indication that outward radial diffusion imposes some kind of upper limit on lifetimes of high-energy electrons near geostationary orbit.

Boynton, R.; Balikhin, M.; Mourenas, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA019920

Chorus; electron lifetimes; electron losses; oblique waves

Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions

Wave-particle interactions in the Earth\textquoterights Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth\textquoterights magnetosphere in all MLT sectors, and a large database of measurements of the STAFF-SA instrument onboard the Cluster spacecraft, covering different latitudes for a time interval of more than one solar cycle. Multicomponent measurements of these instruments are a basis for the determination of statistical properties of the wave vector directions defined by two spherical angles with respect to the direction of the local magnetic field line. We calculate the probability density functions and probability density functions weighted by the wave intensity for both these angles. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.

Santolik, O.; Hospodarsky, G.; Kurth, W.; Averkamp, T.; Kletzing, C.; Cornilleau-Wehrlin, N.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929880

Atmospheric measurements; Magnetic field measurement; Van Allen Probes

Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions

Wave-particle interactions in the Earth\textquoterights Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth\textquoterights magnetosphere in all MLT sectors, and a large database of measurements of the STAFF-SA instrument onboard the Cluster spacecraft, covering different latitudes for a time interval of more than one solar cycle. Multicomponent measurements of these instruments are a basis for the determination of statistical properties of the wave vector directions defined by two spherical angles with respect to the direction of the local magnetic field line. We calculate the probability density functions and probability density functions weighted by the wave intensity for both these angles. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.

Santolik, O.; Hospodarsky, G.; Kurth, W.; Averkamp, T.; Kletzing, C.; Cornilleau-Wehrlin, N.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929880

Atmospheric measurements; Magnetic field measurement; Van Allen Probes

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward boundary intensification that was followed by an auroral streamer reaching the equatorward boundary of the auroral oval. Three THEMIS satellites in the magnetotail detected flow bursts and one of the THEMIS satellites in the outer plasmasphere observed a ring current injection together with electromagnetic ion cyclotron wave intensifications. Proton auroral brightenings occurred multiple times throughout the storm main phase and a majority of those were correlated with auroral streamers reaching the auroral equatorward boundary. This sequence highlights the important role of transient flow bursts and particle injections for plasma transport into the inner magnetosphere and thus reflects a tail-inner magnetospheric interaction process in which transient flow bursts play an important role in injecting ring current ions into the plasmasphere, causing rapid modulation of precipitation and the resultant subauroral proton aurora.

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data

Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonstrate that the spatiotemporal evolution of chorus intensity in the equatorial magnetosphere can be reasonably estimated from electron flux measurements made by multiple low-altitude POES satellites with a broad coverage of L shell and magnetic local time. Such a data-based, dynamic model of chorus waves can provide near-real-time wave information on a global scale for any time period where POES electron data are available. A combination of the chorus wave spatiotemporal distribution acquired using this methodology and the direct spaceborne wave measurements can be used to evaluate the quantitative scattering caused by resonant wave-particle interactions and thus model radiation belt electron variability.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Green, Janet; Kletzing, Craig; Kurth, William; Hospodarsky, George; Pich, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.710.1002/2014JA019935

electron precipitation; global wave distribution; magnetospheric chorus; physics-based technique; wave resonant scattering

The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth\textquoterights magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly\textquoterights Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth\textquoterights magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth\textquoterights magnetotail during the about 6 months that comprise orbital phase 2.

Mauk, B.; Blake, J.; Baker, D.; Clemmons, J.; Reeves, G.; Spence, H.; Jaskulek, S.; Schlemm, C.; Brown, L.; Cooper, S.; Craft, J.; Fennell, J.; Gurnee, R.; Hammock, C.; Hayes, J.; Hill, P.; Ho, G.; Hutcheson, J.; Jacques, A.; Kerem, S.; Mitchell, D.; Nelson, K.; Paschalidis, N.; Rossano, E.; Stokes, M.; Westlake, J.;

Published by: Space Science Reviews      Published on: 06/2014

YEAR: 2014     DOI: 10.1007/s11214-014-0055-5

Magnetic reconnection; Magnetosphere; Magnetospheric multiscale; NASA mission; Particle acceleration; Space plasma

Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; He, Zhaoguo; Shen, Chao; Shen, Chenglong; Wang, C.; Liu, Rui; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019919

Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement in magnitude, timing, energy dependence, and pitch angle distribution with the observed electron PSD near its peak location. However, radial diffusion and other loss processes may be required to explain the differences between the observation and simulation at other locations away from the PSD peak. Our simulation results, together with previous studies, suggest that local acceleration by chorus waves is a robust and ubiquitous process and plays a critical role in accelerating injected seed electrons with convective energies (~100 keV) to highly relativistic energies (several MeV).

Li, W.; Thorne, R.; Ma, Q.; Ni, B.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Kanekal, S.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019945

Van Allen Probes

Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region

The relativistic electrons in the inner radiation belt have received little attention in the past due to sparse measurements and unforgiving contamination from the inner belt protons. The high-quality measurements of the Magnetic Electron Ion Spectrometer instrument onboard Van Allen Probes provide a great opportunity to investigate the dynamics of relativistic electrons in the low L region. In this letter, we report the newly unveiled pitch angle distribution (PAD) of the energetic electrons with minima at 90\textdegree near the magnetic equator in the inner belt and slot region. Such a PAD is persistently present throughout the inner belt and appears in the slot region during storms. One hypothesis for 90\textdegree minimum PADs is that off 90\textdegree electrons are preferentially heated by chorus waves just outside the plasmapause (which can be at very low L during storms) and/or fast magnetosonic waves which exist both inside and outside the plasmasphere.

Zhao, H.; Li, X.; Blake, J.; Fennell, J.; Claudepierre, S.; Baker, D.; Jaynes, A.; Malaspina, D.; Kanekal, S.;

Published by: Geophysical Research Letters      Published on: 04/2014

YEAR: 2014     DOI: 10.1002/2014GL059725

Van Allen Probes

Analytic expressions for ULF wave radiation belt radial diffusion coefficients

We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV\textemdasheven though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp.

Ozeke, Louis; Mann, Ian; Murphy, Kyle; Rae, Jonathan; Milling, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019204

Diffusion Coefficient; Radiation belt; ULF wave

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90\% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent of the dropout. THEMIS and the Van Allen Probes observed telltale signatures of loss due to magnetopause shadowing and subsequent outward radial transport, including similar loss of energetic ring current ions. However, Van Allen Probes observations suggest that another loss process played a role for multi-MeV electrons at lower L shells (L* < ~4).

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase dropout exhibited enhanced losses to the atmosphere at L* < 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in <4 h. Based on POES observations of precipitating >1 MeV electrons and energetic protons, SAMPEX >1 MeV electrons, and ground observations of band-limited Pc1-2 wave activity, we show that this sudden loss was consistent with pitch angle scattering by electromagnetic ion cyclotron waves in the dusk magnetic local time sector at 3 < L* < 4. At 4 < L* < 5, local acceleration was also active during the main and early recovery phases, when growing peaks in electron PSD were observed by both Van Allen Probes and THEMIS. This acceleration corresponded to the period when IMF Bz was southward, the AE index was >300 nT, and energetic electron injections and whistler-mode chorus waves were observed throughout the inner magnetosphere for >12 h. After this period, Bz turned northward, and injections, chorus activity, and enhancements in PSD ceased. Overall, the outer belt was depleted by this storm. From the unprecedented level of observations available, we show direct evidence of the competitive nature of different wave-particle interactions controlling relativistic electron fluxes in the outer radiation belt.

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Design of a spacecraft integration and test facility at The Johns Hopkins University Applied Physics Laboratory

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is dedicated to solving critical challenges as set forth by the National Aeronautics and Space Administration and the Department of Defense. JHU/APL participates fully in the nation\textquoterights formulation of space science and exploration priorities, providing the needed science, engineering, and technology, including the production and operation of unique spacecraft, instruments, and subsystems.

Liggett, William; Handiboe, Jon; Theus, Eugene; Hartka, Ted; Navid, Hadi;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836273

Spacecraft Design

Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations

We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90\textdegree pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90\textdegree. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2\textendash8 MeV) electron loss but which is confined to pitch angles below around 45\textdegree and not affecting the core distribution.

Usanova, M.; Drozdov, A.; Orlova, K.; Mann, I.; Shprits, Y.; Robertson, M.; Turner, D.; Milling, D.; Kale, A.; Baker, D.; Thaller, S.; Reeves, G.; Spence, H.; Kletzing, C.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL059024

Van Allen Probes

Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations

The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 \textpm 0.5). This reveals graphically that both \textquotedblleftcompeting\textquotedblright mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; Shprits, Y;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013GL058942

Van Allen Probes

Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input

The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a test of the model. We also used the PSD generated from the Shin and Lee model as constraint and examined it by computing the error relative to the LANL geosynchronous spacecraft data-driven run. The calculation shows that there is overestimation and underestimation at different times; however, the direct insertion of the statistical model can be used to drive the radial diffusion model generally, producing the phase space density dropout and increase during a storm. Having this model based on a solar wind parameterized data set, we can run the radial diffusion model for storms when particle measurements are not available as input. We chose the Whole Heliosphere Interval as an example and compared the result with MHD/test-particle simulations, obtaining better agreement with GPS measurement using the diffusion model, which incorporates atmospheric losses and an initial equilibrium radial profile.

Li, Zhao; Hudson, Mary; Chen, Yue;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2013JA019320

outer boundary; radial diffusion; Radiation belt; Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Magnetosonic wave excitation by ion ring distributions in the Earth\textquoterights inner magnetosphere

Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth\textquoterights magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause where the wave spectrum varied with fLHR and inside the plasmapause where the wave frequency band remained nearly constant. Our plasma instability analysis in three different regions shows that higher and narrow frequency band MS waves are excited locally outside the plasmapause, and lower and broad frequency band MS waves are excited in the region where the density slightly increases. However, there is no evidence for wave excitation inside the plasmapause, and wave propagation from a distant source is needed to explain their existence. The simulation of the MS wave growth rate spectra during this event agrees reasonably well with the observed wave magnetic field power spectra. We also simulated a MS wave event on 19 October 2011 in the dusk sector and found that the ion ring distribution with an ion ring energy slightly higher than the local Alfven energy can excite the typical broad band MS waves outside the plasmapause.

Ma, Qianli; Li, Wen; Chen, Lunjin; Thorne, Richard; Angelopoulos, Vassilis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013JA019591

magnetosonic waves; ring current; THEMIS observation; wave excitation

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100\textendash300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes



  6      7      8      9      10      11