• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 1109 entries in the Bibliography.

Showing entries from 251 through 300


Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states

We report multi-spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP-A and RBSP-B recorded gradual variation of the polarization states of the poloidal waves; the ratio (|Ba|/|Br|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both L and MLT. We identify the poloidal wave as second harmonic mode with a large azimuthal wave number (m) of \textendash232. From RBSP particle measurements we find evidence that the high- m poloidal waves during the polarization variations were powered by inward radial gradients and bump-on-tail ion distributions through the N=1 drift-bounce resonance. Most of the time, the dominant free energy source was inward radial gradients, compared with the positive gradient in the energy distribution of the bump-on-tail ion distributions.

Wei, Chao; Dai, Lei; Duan, Suping; Wang, Chi; Wang, YuXian;

Published by: Earth and Planetary Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.26464/epp2019021

bump-on-tail; inward gradient; polarization rotation; poloidal waves; Van Allen Probes

Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections

Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the cumulative growth of magnetosonic waves. For intense injections, this wave quenching region could extend over 2 hr in magnetic local time and 0.5 Earth radii in radial distance. These results provide a new understanding of the generation and distribution of magnetosonic waves.

Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL082944

Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315\textpm32 km over L shells of ~5\textendash6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direction than in the radial direction. Our findings are crucial to quantify wave-particle interaction process, particularly the nonlinear interactions between chorus and energetic electrons.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently scatter ~10- to 100-keV electrons at rates up to ~10-4 s-1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons and to >100 days for >5-MeV electrons. These newly obtained statistical properties of plume hiss and associated electron scattering effects are useful to future modeling efforts of radiation belt electron dynamics.

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

Timescales for electron quasi-linear diffusion by lower-band chorus waves: the effects of ω pe / Ω ce dependence on geomagnetic activity

Electron scattering by chorus waves is an important mechanism that can lead to fast electron acceleration and loss in the outer radiation belt. Making use of Van Allen Probes measurements, we present the first statistical survey of megaelectron volt electron pitch angle and energy quasi-linear diffusion rates by chorus waves as a function of L-shell, local time, and AE index, taking into account the local electron plasma frequency to gyrofrequency ratio ωpe/Ωce, chorus wave frequency, and resonance wave amplitude. We demonstrate that during disturbed periods, ωpe/Ωce strongly decreases in the night sector, leading to a faster electron loss but also a much faster electron energization in two distinct regions just above the plasmapause and at L ~ 3.5\textendash5.5. Spatiotemporal variations of ωpe/Ωce with AE shape the evolution of electron energization in the outer belt, sometimes leading to very short time scales for quasi-linear megaelectron volt electron acceleration in agreement with Van Allen Probes observations.

Agapitov, O.; Mourenas, D.; Artemyev, A.; Hospodarsky, G.; Bonnell, J.W.;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083446

magnetosphere plasma density; quasi-linear scattering and acceleration; Van Allen Probes; wave-particle interactions

Triggered Plasmaspheric Hiss: Rising Tone Structures

In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low-frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elements are measured above 1 kHz. The rising tone structures are probably triggered by the incoherent hiss part below 1 kHz, which is rarely reported before.

Zhu, Hui; Liu, Xu; Chen, Lunjin;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL082688

Plasmaspheric Hiss; Radiation belts; Rising tone structure; Van Allen Probes

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions

Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L-shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4-6 and 00-24 MLT, with a higher occurrence in the region of L=5-6 and 06-19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and tend to be more distinct with increasing geomagnetic activity.

Chen, Yaru; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082668

electron ring distribution; global occurrences; Radiation belt; Van Allen Probe observation; Van Allen Probes; waves

Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017

In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse-height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consistent with low altitude vertical cutoffs. Both the observations and numerical results show that proton access into the inner magnetosphere depends strongly on angle between particle arrival direction and magnetic west. The numerical result is approximately consistent with the observation that the energy of almost all solar protons stays above the minimum cutoff rigidity.

Qin, Murong; Hudson, Mary; Kress, Brian; Selesnick, Richard; Engel, Miles; Li, Zhao; Shen, Xiaochen;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026380

cutoff energy; cutoff location; Dartmouth geomagnetic cutoff code; Pulse height analyzed data; Solar proton; straggling function; Van Allen Probes

Modulation of Locally Generated Equatorial Noise by ULF Wave

In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.

Zhu, Hui; Chen, Lunjin; Liu, Xu; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026199

linear growth rate; magnetosonic waves; Radiation belts; ULF waves; Van Allen Probes

Observational evidence of the drift-mirror plasma instability in Earth\textquoterights inner magnetosphere

We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth\textquoterights inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA\textquoterights Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low frequency and high amplitude plasma waves can occur in the high beta plasma conditions of Earth\textquoterights inner magnetosphere.

Soto-Chavez, A.; Lanzerotti, L.; Manweiler, J.; Gerrard, A.; Cohen, R.; Xia, Z.; Chen, L.; Kim, H.;

Published by: Physics of Plasmas      Published on: 04/2019

YEAR: 2019     DOI: 10.1063/1.5083629

Van Allen Probes

Quasi Thermal Noise Spectroscopy for Van Allen Probes

Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper-hybrid and multiple harmonic\textemdashor (n + 1/2)fce\textemdashemissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical interpretation. This method can in principle be applied to other spacecraft, including the Parker Solar Probe.

Yoon, Peter; Hwang, Junga; Kim, Hyangpyo; Seough, Jungjoon;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019JA026460

(n+1/2)fce; antenna geometry; Quasi-thermal; Radiation belt; Upper hybrid; Van Allen Probes

Reanalysis of Ring Current Electron Phase Space Densities Using Van Allen Probe Observations, Convection Model, and Log-Normal Kalman Filter

Aseev, N.; Shprits, Y;

Published by: Space Weather      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018SW002110

data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes

Reanalysis of ring current electron phase space densities using Van Allen Probe observations, convection model, and log-normal Kalman filter

Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics-based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log-transformed convection model of ring current electrons and Van Allen Probe data. We consider long-term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting errors in model predictions associated with uncertainties in electron lifetimes, boundary conditions, and convection electric fields. We demonstrate that reanalysis retains features which cannot be fully reproduced by the convection model such as storm-time earthward propagation of the electrons down to 2.5 RE. The Kalman filter can adjust model predictions to satellite measurements even in regions where data are not available. We show that the Kalman filter can adjust model predictions in accordance with observations for μ = 0.1, 2.3, and 9.9 MeV/G and constant K = 0.3 G1/2RE electrons. The results of this study demonstrate that data assimilation can improve performance of ring current models, better quantify model uncertainties, and help deeper understand the physics of the ring current particles.

Aseev, N.A.; Shprits, Y.Y.;

Published by: Space Weather      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018SW002110

data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes

The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations

Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left-handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local time regions with different intensity. Compared with helium band waves, hydrogen band waves behave similarly except that they are often observed in low-density regions. These results reveal several important features regarding EMIC waves excitation and propagation.

Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082633

EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes

Shorting Factor In-Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth\textquoterights Plasmasphere

Satellite-based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In-flight calibration of double-probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly exceeds any geophysical electric field of interest in the plasmasphere. Thus, the highest level of accuracy in calibration is required. The objective of this work is to discuss the accuracy of the setting sf = 1 and therefore to examine the accuracy of Van Allen Probes electric field measurements below L = 2. We introduce a method to determine the shorting factor near perigee. It relies on the idea that the value of the geophysical electric field measured in the Earth\textquoterights rotating frame of reference is independent of whether the spacecraft is approaching perigee or past perigee, that is, it is independent of spacecraft velocity. We obtain that sf = 0.994 \textpm 0.001. The resulting margins of errors in individual electric drift measurements are of the order of \textpm0.1\% of spacecraft velocity (a few meters per second).

Lejosne, Solène; Mozer, F.;

Published by: Earth and Space Science      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018EA000550

DC electric field; double probe instrument; electric drift; plasmasphere; shorting factor; Van Allen Probes

Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s

Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.

Lanzerotti, Louis;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019JA026763

Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements

Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8- to 7.7-MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense storms with/without flux enhancements of different energy electrons are conducted. The results suggest that the storms with higher solar wind speed, sustained southward interplanetary magnetic field Bz, lower solar wind number density, higher solar wind Ey, and elevated and sustained substorm activity are more likely to cause ultrarelativistic electron flux enhancements in the outer belt. Comparing results of different energy electrons, the solar wind speed and AE index are the two parameters mostly correlated with the energy-dependent acceleration of ultrarelativistic electrons: Storms with higher solar wind speed and elevated and sustained substorm activity are more likely to cause flux enhancement of ultrarelativistic electrons with higher energies. This suggests the important roles of inward radial diffusion as well as the source and seed populations provided by substorms on the energy-dependent acceleration of ultrarelativistic electrons.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026257

Acceleration mechanism; Geomagnetic storms; Radiation belt; solar wind conditions; ultrarelativistic electrons; Van Allen Probes

EMIC Wave-Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere

While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron-resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower-energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth\textquoterights inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range of electron energies and pitch angles affected is examined to better assess the realistic effects of EMIC-driven bounce resonance on energetic electron populations based on actual, locally observed event-based parameters. Significant local diffusion coefficients (~ > 10-6 s-1) for 50- to 100-keV electrons are achieved for both H+ band wave events as well as He+ band, with diffusion coefficients peaking for near-90\textdegree pitch angles but remaining elevated for intermediate ones as well. Diffusion coefficients for higher-energy 200-keV electrons are typically multiple orders of magnitude lower (ranging from 10-11 to 10-6 s-1) and often peak at lower pitch angles (~20\textendash30\textdegree). These results suggest that both H+ and He+ band EMIC waves can play a role in shaping lower-energy electron dynamics via bounce-resonant interactions, in addition to their role in relativistic electron loss via cyclotron resonance.

Blum, L.W.; Artemyev, A.; Agapitov, O.; Mourenas, D.; Boardsen, S.; Schiller, Q.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026427

bounce resonance; EMIC wave; energetic electrons; Radiation belts; Van Allen Probes

Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity

Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi-linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC-driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 L shells) with similar patterns between satellites.

Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026291

EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes

Local and Statistical Maps of Lightning-Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World-Wide Lightning Location Network Database

We propose a new method that uses the World-Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 \texttimes 108 strokes.). The ratio of the drift power density to the local power density defines a time-resolved WWLLN-based model of lightning-generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time-resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-math-0002 in general. Over oceans, urn:x-wiley:00948276:media:grl58808:grl58808-math-0003 is larger than ~10. urn:x-wiley:00948276:media:grl58808:grl58808-math-1003 varies with season, urn:x-wiley:00948276:media:grl58808:grl58808-math-0083 ~ 2.5 from winter to summer. The yearly-median urn:x-wiley:00948276:media:grl58808:grl58808-math-0004 decays as urn:x-wiley:00948276:media:grl58808:grl58808-math-0005. The strong geographical and temporal variation should be kept in assessing effects in space. RWWLLN > 1 suggests significant LGW effects in the inner belt.

Ripoll, J.-F.; Farges, T.; Lay, E.; Cunningham, G.;

Published by: Geophysical Research Letters      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018GL081146

drift wave power density; lightning power density; lightning-generated waves; occurrence rate; Radiation belts; Van Allen Probes; WWLLN database

Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss

In addition to clarifying morphological structures of the Earth\textquoterights radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6-year period 1 September 2012 to 1 September 2018. We focus on data about the relativistic and ultrarelativistic electrons (E>=5 MeV) measured by the Relativistic Electron-Proton Telescope sensors on board the Van Allen Probes spacecraft. This work portrays the radiation belt acceleration, transport, and loss characteristics over a wide range of geomagnetic events. We emphasize features seen repeatedly in the data (three-belt structures, \textquotedblleftimpenetrable\textquotedblright barrier properties, and radial diffusion signatures) in the context of acceleration and loss mechanisms. We especially highlight solar wind forcing of the ultrarelativistic electron populations and extended periods when such electrons were absent. The analysis includes new display tools showing spatial features of the mission-long time variability of the outer Van Allen belt emphasizing the remarkable dynamics of the system.

Baker, Daniel; Hoxie, Vaughn; Zhao, Hong; Jaynes, Allison; Kanekal, Shri; Li, Xinlin; Elkington, Scot;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026259

convection electric field; Energetic particle deep penetration; Low L Region; Radiation belts; Van Allen Probes

Multi-instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection

Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large-scale SAPS (LS-SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0456 UT. In the conjugate magnetosphere, a large SAPS electric field (\~8 mV/m) pointing radially outward, a local magnetic field dip, and a dispersionless ion injection were observed simultaneously by VAP-A at L shell = 3.5 and MLT = 20. The particle injection observed by VAP-A is likely associated with the particle injection observed by the Geostationary Operational Environmental Satellite 15 near 20 MLT. Magnetic perturbations observed by the ground magnetometers and flow reversals observed by SuperDARN reveal that this mesoscale enhancement of SAPS developed near the Harang reversal and before the substorm onset. The observed complex signatures in both space and ground can be explained by a two-loop current wedge generated by the perturbed plasma pressure gradient and the diamagnetic effect of the structured ring current following particle injection.

Wang, Zihan; Zou, Shasha; Shepherd, Simon; Liang, Jun; Gjerloev, Jesper; Ruohoniemi, Michael; Kunduri, Bharat; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019JA026535

Field-Aligned Current; Particle Injection; Sub-auroral Polarization Stream; Van Allen Probes

Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock-compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth\textquoterights magnetosphere. In particular, the main depletions occurred during a high-dynamic pressure sheath and shock-compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.

Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026238

interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes

Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi-linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scattering driven by plume whistler mode waves and is critical for understanding energetic electron loss process in the inner magnetosphere. We suggest the effect of plume whistler mode waves be accurately incorporated into future radiation belt modeling.

Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019GL082095

electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave

Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations

Plasmaspheric hiss waves commonly observed in high-density regions in the Earth\textquoterights magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is more commonly observed regardless of geomagnetic activity in both the midnight-to-dawn and dusk sector. By contrast, stronger amplitude hiss occurs preferentially during geomagnetically active times in the dusk sector. The wave normal angles are distributed over a broad range from 0\textdegree to 90\textdegree with a bimodal distribution: a quasi-field-aligned population (<20\textdegree) with an occurrence rate of <60\% and an oblique one (>50\textdegree) with a relative low occurrence rate of ≲20\%. Therefore, from a statistical point of view, we confirm that the hiss intensity (a few tens of picotesla) and field-aligned hiss wave adopted in previous simulation studies are a reasonable assumption but stress that the activity dependence of the wave amplitude should be considered.

Kim, Kyung-Chan; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026458

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes

Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations

Properties of banded, no-gap, lower band only, and upper band only whistler mode waves (0.1\textendash0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no-gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no-gap whistler waves peaks at magnetic latitude |MLAT|\~8\textendash10\textdegree, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001\textdegree. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no-gap and banded whistler mode waves is critical to further understand the formation mechanism of the power minimum at half electron gyrofrequency.

Teng, S.; Tao, X.; Li, W.;

Published by: Geophysical Research Letters      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019GL082161

banded whistler waves; chorus waves; no-gap whistler waves; Van Allen Probes

Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and space-based observational data, global magnetohydrodynamic (MHD) simulations, and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. MHD simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfv\ en modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by Phase Space Density (PhSD) calculations for this global recovery period.

Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026184

alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes

The dynamics of Van Allen belts revisited

Shprits, Yuri; Horne, Richard; Kellerman, Adam; Drozdov, Alexander;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4350

Van Allen Probes

Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth\textquoterights radiation belts and ring current

The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two algorithms for background correction. The first algorithm is based on the empirical contamination percentages by both protons and electrons. The second algorithm uses simultaneous proton observations. The efficiencies of these algorithms are demonstrated by comparison of the corrected Cluster/RAPID/IES data with Van Allen Probes/Magnetic Electron Ion Spectrometer (MagEIS) measurements for 2012-2015. Both techniques improved the IES electron data in the radiation belts and ring current, as the yearly averaged flux intensities of the two missions show the ratio of measurements close to 1. We demonstrate a scientific application of the corrected IES electron data analyzing its evolution during solar cycle. Spin-averaged yearly mean IES electron intensities in the outer belt for energies 40-400 keV at L-shells between 4 and 6 showed high positive correlation with AE index and solar wind dynamic pressure during 2001- 2016. The relationship between solar wind dynamic pressure and IES electron measurements in the outer radiation belt was derived as a uniform linear-logarithmic equation.

Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW001989

electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes

Excitation of extremely low-frequency chorus emissions: The role of background plasma density

Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts. However, the mechanism (s) generating these low-frequency chorus emissions have not been well understood. . In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f ce (typical ordinary chorus) to 0.02 f ce (extremely low-frequency chorus). Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N e was found to be several times larger than has been associated with observations of ordinary chorus waves. For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates (calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f ce when the background plasma density N e increases. Especially when N e reaches 90 cm\textendash3 or more, the lowest unstable frequency can extend to 0.02 f ce or even less, which is consistent with satellite observations. Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely low-frequency chorus waves by controlling the wave growth rates.

Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Yao, Fei; Qiao, Zheng; Wygant, John; Funsten, Herbert;

Published by: Earth and Planetary Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.26464/epp2019001

anisotropic temperature instability; linear growth rate; low-frequency chorus emissions; Van Allen Probes; whistler mode

Initial Results From the GEM Challenge on the Spacecraft Surface Charging Environment

Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group \textquotedblleftInner Magnetosphere Cross-energy/Population Interactions\textquotedblright initiated a community-wide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface charging environment for the Van Allen Probes orbits during the 17 March 2013 storm event. The integrated electron flux between 10 and 50 keV is used as the metrics. Various skill scores are applied to quantitatively measure the modeling performance against observations. Results indicate that no model consistently perform the best in all of the skill scores or for both satellites. We find that from these simulations the ring current model with observational flux boundary condition and Weimer electric potential driver generally reproduces the most realistic flux level around the spacecraft. A simple and weaker Volland-Stern electric field is not capable of effectively transporting the same plasma at the boundary toward the Earth. On the other hand, if the ring current model solves the electric field self-consistently and obtains similar strength and pattern in the equatorial plane as the Weimer model, the boundary condition plays another crucial role in determining the electron flux level in the inner region. When the boundary flux spectra based on magnetohydrodynamics (MHD) model/empirical model deviate from the shape or magnitude of the observed distribution function, the simulation produces poor skill scores along Van Allen Probes orbits.

Yu, Yiqun; ätter, Lutz; Jordanova, Vania; Zheng, Yihua; Engel, Miles; Fok, Mei-Ching; Kuznetsova, Maria;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW002031

GEM challenge; IMCEPI Focus Group; ring current model assessment; Space weather; spacecraft surface charging; Van Allen Probes

PreMevE: New Predictive Model for Megaelectron-volt Electrons inside Earth\textquoterights Outer Radiation Belt

This work designs a new model called PreMevE to predict storm-time distributions of relativistic electrons within Earth\textquoterights outer radiation belt. This model takes advantage of the cross-energy, -L-shell, and \textendashpitch-angle coherence associated with wave-electron resonant interactions, ingests observations from belt boundaries\textemdashmainly by NOAA POES in low-Earth-orbits (LEOs), and provides high-fidelity nowcast (multiple-hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L-shells between 2.8-7 through linear prediction filters. PreMevE can not only reliably anticipate incoming enhancements of MeV electrons during storms with at least 1-day forewarning time, but also accurately specify the evolving event-specific electron spatial distributions afterwards. The performance of PreMevE is assessed against long-term in situ data from one Van Allen Probe and a LANL geosynchronous satellite. This new model enhances our preparedness for severe MeV electron events in the future, and further adds new science utility to existing and next-generation LEO space infrastructure.

Chen, Yue; Reeves, Geoffrey; Fu, Xiangrong; Henderson, Michael;

Published by: Space Weather      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018SW002095

event-specific predictions; LANL GEO observations; linear predictive filters; MeV electron events; outer radiation belt; precipitation at low-earth-orbits (LEO); Van Allen Probes

Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright

Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4351

Van Allen Probes

Simulations of Electron Energization and Injection by BBFs Using High-Resolution LFM MHD Fields

We study electron injection and energization by bursty bulk flows (BBFs), by tracing electron trajectories using magnetohydrodynamic (MHD) field output from the Lyon-Fedder-Mobarry (LFM) code. The LFM MHD simulations were performed using idealized solar wind conditions to produce BBFs. We show that BBFs can inject energetic electrons of few to 100 keV from the magnetotatail beyond -24 RE to inward of geosynchronous, while accelerating them in the process. We also show the dependence of energization and injection on the initial relative position of the electrons to the magnetic field structure of the BBF, the initial pitch angle, and the initial energy. In addition, we have shown that the process can be nonadiabatic with violation of the first adiabatic invariant (μ). Further, we discuss the mechanism of energization and injection in order to give generalized insight into the process.

Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA025789

Van Allen Probes

Simultaneous trapping of EMIC and MS waves by background plasmas

Electromagnetic ion cyclotron waves and fast magnetosonic waves are found to be simultaneously modulated by background plasma density: both kinds of waves were observed in high plasma density regions but vanished in low density regions. Theoretical analysis based on Snell\textquoterights law and linear growth theory have been utilized to investigate the physical mechanisms driving such modulation. It is suggested that the modulation of fast magnetosonic waves might be due to trapping by plasma density structures, which results from a conservation of the parameter Q during their propagation. Here Q = nrsinψ, with n the refractive index, r the radial distance, and ψ the wave azimuthal angle. As for electromagnetic ion cyclotron waves, the modulation might be owed to the ion composition difference between different plasma density regions. Our results indicate the alternative mechanism for simultaneous appearance of electromagnetic ion cyclotron waves and fast magnetosonic waves (rather than wave excitations of both two wave emissions), which might take combined effects on the evolution of radiation belt electrons.

Yuan, Zhigang; Yu, Xiongdong; Ouyang, Zhihai; Yao, Fei; Huang, Shiyong; Funsten, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026149

EMIC waves; MS waves; Ring current ions; Van Allen Probes; Wave trapping

Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere

This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak-to-peak), in the large-scale electric field (~0.24 mV/m peak-to-peak), and in the cold plasma density (~250 cm-3 \textendash ~70 cm-3 peak-to-peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn-dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti-correlate with solar wind electric field, magnetospheric electric field, and Kp, but not with EUV irradiance, indicating that convective erosion is the dominant physical process controlling the plasmapause at these timescales.

Thaller, S.; Wygant, J.; Cattell, C.; Breneman, A.; Tyler, E.; Tian, S.; Engel, A.; De Pascuale, S.; Kurth, W.; Kletzing, C.; Tears, J.; Malaspina, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026365

convection electric field; inner magnetosphere; Plasmapause; plasmasphere; solar rotation; Van Allen Probes

Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt

We present the first statistical analysis with continuous data coverage and non-averaged amplitudes of the prevalence and distribution of high-amplitude (> 5 mV/m) whistler-mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0-7 where they are present 1-4\% of the time. During high geomagnetic activity, high-amplitude whistler-mode wave occurrence rises above 30\% in some regions. During these active times the plasmasphere erodes to lower L and high-amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5-4) in the pre-dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large-amplitude waves interact non-linearly with electrons. Results also may provide clues regarding the mechanisms which result in growth to large amplitudes.

Tyler, E.; Breneman, A.; Cattell, C.; Wygant, J.; Thaller, S.; Malaspina, D.;

Published by: Geophysical Research Letters      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2019GL082292

Chorus; Radiation belt; Van Allen belt; Van Allen Probes; Whistler waves

Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism

Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94\% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere and be a source of plasmaspheric hiss. This result suggests it is unlikely that chorus directly contributes a significant fraction of plasmaspheric hiss wave power.

Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.;

Published by: Geophysical Research Letters      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2019GL082111

chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle

Global Empirical Picture of Magnetospheric Substorms Inferred From Multimission Magnetometer Data

Magnetospheric substorms represent key explosive processes in the interaction of the Earth\textquoterights magnetosphere with the solar wind, and their understanding and modeling are critical for space weather forecasting. During substorms, the magnetic field on the nightside is first stretched in the antisunward direction and then it rapidly contracts earthward bringing hot plasmas from the distant space regions into the inner magnetosphere, where they contribute to geomagnetic storms and Joule dissipation in the polar ionosphere, causing impressive splashes of aurora. Here we show for the first time that mining millions of spaceborne magnetometer data records from multiple missions allows one to reconstruct the global 3-D picture of these stretching and dipolarization processes. Stretching results in the formation of a thin (less than the Earth\textquoterights radius) and strong current sheet, which is diverted into the ionosphere during dipolarization. In the meantime, the dipolarization signal propagates further into the inner magnetosphere resulting in the accumulation of a longer lived current there, giving rise to a protogeomagnetic storm. The global 3-D structure of the corresponding substorm currents including the substorm current wedge is reconstructed from data.

Stephens, G.; Sitnov, M.; Korth, H.; Tsyganenko, N.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025843

Current sheet thinning; Data-mining; Magnetotail dipolarization; Storm-substorm relationship; substorm current wedge; substorms; Van Allen Probes

Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes

The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1\textendash2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally inside the plasmasphere due to the instability of injected kiloelectron volt electrons.

He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081578

electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes

Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations

The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy (

Gkioulidou, Matina; Ohtani, S.; Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025862

inner magnetosphere; O+ outflow; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm

Using data from Defense Meteorological Satellite Program 16\textendash18, National Oceanic and Atmospheric Administration 15\textendash19, and METOP 1\textendash2 satellites, we reconstructed for the first time a two-dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm onset that continued during the storm main phase. Plasma pressure remained elevated during the first 18 hr of the recovery phase and then started to decrease to normal levels. We found that the variation in pressure correlates with the change in the slope of the Dst index, and that the plasma pressure nearly conserved its axial symmetry during the storm, giving one more evidence that the ring current provides the main contribution to the Dst variation. We also found that the plasma pressure in the magnetosphere correlates with the solar wind dynamic pressure with a correlation coefficient exceeding 0.9, which can be related to the pressure balance at the magnetospheric flanks. The results obtained here agree with the concept of the ring current generation by an inner magnetosphere plasma ring in magnetostatic equilibrium.

Stepanova, M.; Antonova, E.E.; Moya, P.S.; Pinto, V.A.; Valdivia, J.A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025965

Dynamic pressure; Geomagnetic storm; inner magnetosphere; plasma pressure; Solar wind; Van Allen Probes

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics.

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

  4      5      6      7      8      9